-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
Copy pathagent_controller.py
1238 lines (1089 loc) Β· 50.3 KB
/
agent_controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import asyncio
import copy
import os
import traceback
from typing import Callable, ClassVar, Type
import litellm # noqa
from litellm.exceptions import ( # noqa
APIConnectionError,
APIError,
AuthenticationError,
BadRequestError,
ContentPolicyViolationError,
ContextWindowExceededError,
InternalServerError,
NotFoundError,
OpenAIError,
RateLimitError,
ServiceUnavailableError,
Timeout,
)
from openhands.controller.agent import Agent
from openhands.controller.replay import ReplayManager
from openhands.controller.state.state import State, TrafficControlState
from openhands.controller.stuck import StuckDetector
from openhands.core.config import AgentConfig, LLMConfig
from openhands.core.exceptions import (
AgentStuckInLoopError,
FunctionCallNotExistsError,
FunctionCallValidationError,
LLMContextWindowExceedError,
LLMMalformedActionError,
LLMNoActionError,
LLMResponseError,
)
from openhands.core.logger import LOG_ALL_EVENTS
from openhands.core.logger import openhands_logger as logger
from openhands.core.schema import AgentState
from openhands.events import (
EventSource,
EventStream,
EventStreamSubscriber,
RecallType,
)
from openhands.events.action import (
Action,
ActionConfirmationStatus,
AgentDelegateAction,
AgentFinishAction,
AgentRejectAction,
ChangeAgentStateAction,
CmdRunAction,
IPythonRunCellAction,
MessageAction,
NullAction,
)
from openhands.events.action.agent import CondensationAction, RecallAction
from openhands.events.event import Event
from openhands.events.observation import (
AgentDelegateObservation,
AgentStateChangedObservation,
ErrorObservation,
NullObservation,
Observation,
)
from openhands.events.serialization.event import event_to_trajectory, truncate_content
from openhands.llm.llm import LLM
from openhands.llm.metrics import Metrics, TokenUsage
# note: RESUME is only available on web GUI
TRAFFIC_CONTROL_REMINDER = (
"Please click on resume button if you'd like to continue, or start a new task."
)
class AgentController:
id: str
agent: Agent
max_iterations: int
event_stream: EventStream
state: State
confirmation_mode: bool
agent_to_llm_config: dict[str, LLMConfig]
agent_configs: dict[str, AgentConfig]
parent: 'AgentController | None' = None
delegate: 'AgentController | None' = None
_pending_action: Action | None = None
_closed: bool = False
filter_out: ClassVar[tuple[type[Event], ...]] = (
NullAction,
NullObservation,
ChangeAgentStateAction,
AgentStateChangedObservation,
)
_cached_first_user_message: MessageAction | None = None
def __init__(
self,
agent: Agent,
event_stream: EventStream,
max_iterations: int,
max_budget_per_task: float | None = None,
warning_budget_increment: float | None = None,
agent_to_llm_config: dict[str, LLMConfig] | None = None,
agent_configs: dict[str, AgentConfig] | None = None,
sid: str | None = None,
confirmation_mode: bool = False,
initial_state: State | None = None,
is_delegate: bool = False,
headless_mode: bool = True,
status_callback: Callable | None = None,
replay_events: list[Event] | None = None,
):
"""Initializes a new instance of the AgentController class.
Args:
agent: The agent instance to control.
event_stream: The event stream to publish events to.
max_iterations: The maximum number of iterations the agent can run.
max_budget_per_task: The maximum budget (in USD) allowed per task, beyond which the agent will stop.
warning_budget_increment: The budget increment (in USD) at which to warn the user and ask for approval to continue.
For example, if set to 5.0, the agent will pause and ask for approval at $5, $10, $15, etc.
agent_to_llm_config: A dictionary mapping agent names to LLM configurations in the case that
we delegate to a different agent.
agent_configs: A dictionary mapping agent names to agent configurations in the case that
we delegate to a different agent.
sid: The session ID of the agent.
confirmation_mode: Whether to enable confirmation mode for agent actions.
initial_state: The initial state of the controller.
is_delegate: Whether this controller is a delegate.
headless_mode: Whether the agent is run in headless mode.
status_callback: Optional callback function to handle status updates.
replay_events: A list of logs to replay.
"""
self.id = sid or event_stream.sid
self.agent = agent
self.headless_mode = headless_mode
self.is_delegate = is_delegate
# the event stream must be set before maybe subscribing to it
self.event_stream = event_stream
# subscribe to the event stream if this is not a delegate
if not self.is_delegate:
self.event_stream.subscribe(
EventStreamSubscriber.AGENT_CONTROLLER, self.on_event, self.id
)
# state from the previous session, state from a parent agent, or a fresh state
self.set_initial_state(
state=initial_state,
max_iterations=max_iterations,
confirmation_mode=confirmation_mode,
)
self.max_budget_per_task = max_budget_per_task
self.warning_budget_increment = warning_budget_increment
self.agent_to_llm_config = agent_to_llm_config if agent_to_llm_config else {}
self.agent_configs = agent_configs if agent_configs else {}
self._initial_max_iterations = max_iterations
self._initial_max_budget_per_task = max_budget_per_task
# stuck helper
self._stuck_detector = StuckDetector(self.state)
self.status_callback = status_callback
# replay-related
self._replay_manager = ReplayManager(replay_events)
async def close(self, set_stop_state=True) -> None:
"""Closes the agent controller, canceling any ongoing tasks and unsubscribing from the event stream.
Note that it's fairly important that this closes properly, otherwise the state is incomplete.
"""
if set_stop_state:
await self.set_agent_state_to(AgentState.STOPPED)
# we made history, now is the time to rewrite it!
# the final state.history will be used by external scripts like evals, tests, etc.
# history will need to be complete WITH delegates events
# like the regular agent history, it does not include:
# - 'hidden' events, events with hidden=True
# - backend events (the default 'filtered out' types, types in self.filter_out)
start_id = self.state.start_id if self.state.start_id >= 0 else 0
end_id = (
self.state.end_id
if self.state.end_id >= 0
else self.event_stream.get_latest_event_id()
)
self.state.history = list(
self.event_stream.get_events(
start_id=start_id,
end_id=end_id,
reverse=False,
filter_out_type=self.filter_out,
filter_hidden=True,
)
)
# unsubscribe from the event stream
# only the root parent controller subscribes to the event stream
if not self.is_delegate:
self.event_stream.unsubscribe(
EventStreamSubscriber.AGENT_CONTROLLER, self.id
)
self._closed = True
def log(self, level: str, message: str, extra: dict | None = None) -> None:
"""Logs a message to the agent controller's logger.
Args:
level (str): The logging level to use (e.g., 'info', 'debug', 'error').
message (str): The message to log.
extra (dict | None, optional): Additional fields to log. Includes session_id by default.
"""
message = f'[Agent Controller {self.id}] {message}'
if extra is None:
extra = {}
extra_merged = {'session_id': self.id, **extra}
getattr(logger, level)(message, extra=extra_merged, stacklevel=2)
def update_state_before_step(self):
self.state.iteration += 1
self.state.local_iteration += 1
async def update_state_after_step(self):
# update metrics especially for cost. Use deepcopy to avoid it being modified by agent._reset()
self.state.local_metrics = copy.deepcopy(self.agent.llm.metrics)
async def _react_to_exception(
self,
e: Exception,
):
"""React to an exception by setting the agent state to error and sending a status message."""
# Store the error reason before setting the agent state
self.state.last_error = f'{type(e).__name__}: {str(e)}'
if self.status_callback is not None:
err_id = ''
if isinstance(e, AuthenticationError):
err_id = 'STATUS$ERROR_LLM_AUTHENTICATION'
self.state.last_error = err_id
elif isinstance(
e,
(
ServiceUnavailableError,
APIConnectionError,
APIError,
),
):
err_id = 'STATUS$ERROR_LLM_SERVICE_UNAVAILABLE'
self.state.last_error = err_id
elif isinstance(e, InternalServerError):
err_id = 'STATUS$ERROR_LLM_INTERNAL_SERVER_ERROR'
self.state.last_error = err_id
elif isinstance(e, BadRequestError) and 'ExceededBudget' in str(e):
err_id = 'STATUS$ERROR_LLM_OUT_OF_CREDITS'
self.state.last_error = err_id
elif isinstance(e, ContentPolicyViolationError) or (
isinstance(e, BadRequestError)
and 'ContentPolicyViolationError' in str(e)
):
err_id = 'STATUS$ERROR_LLM_CONTENT_POLICY_VIOLATION'
self.state.last_error = err_id
elif isinstance(e, RateLimitError):
await self.set_agent_state_to(AgentState.RATE_LIMITED)
return
self.status_callback('error', err_id, self.state.last_error)
# Set the agent state to ERROR after storing the reason
await self.set_agent_state_to(AgentState.ERROR)
def step(self):
asyncio.create_task(self._step_with_exception_handling())
async def _step_with_exception_handling(self):
try:
await self._step()
except Exception as e:
self.log(
'error',
f'Error while running the agent (session ID: {self.id}): {e}. '
f'Traceback: {traceback.format_exc()}',
)
reported = RuntimeError(
f'There was an unexpected error while running the agent: {e.__class__.__name__}. You can refresh the page or ask the agent to try again.'
)
if (
isinstance(e, Timeout)
or isinstance(e, APIError)
or isinstance(e, BadRequestError)
or isinstance(e, NotFoundError)
or isinstance(e, InternalServerError)
or isinstance(e, AuthenticationError)
or isinstance(e, RateLimitError)
or isinstance(e, ContentPolicyViolationError)
or isinstance(e, LLMContextWindowExceedError)
):
reported = e
else:
self.log(
'warning',
f'Unknown exception type while running the agent: {type(e).__name__}.',
)
await self._react_to_exception(reported)
def should_step(self, event: Event) -> bool:
"""Whether the agent should take a step based on an event.
In general, the agent should take a step if it receives a message from the user,
or observes something in the environment (after acting).
"""
# it might be the delegate's day in the sun
if self.delegate is not None:
return False
if isinstance(event, Action):
if isinstance(event, MessageAction) and event.source == EventSource.USER:
return True
if (
isinstance(event, MessageAction)
and self.get_agent_state() != AgentState.AWAITING_USER_INPUT
):
# TODO: this is fragile, but how else to check if eligible?
return True
if isinstance(event, AgentDelegateAction):
return True
if isinstance(event, CondensationAction):
return True
return False
if isinstance(event, Observation):
if (
isinstance(event, NullObservation)
and event.cause is not None
and event.cause
> 0 # NullObservation has cause > 0 (RecallAction), not 0 (user message)
):
return True
if isinstance(event, AgentStateChangedObservation) or isinstance(
event, NullObservation
):
return False
return True
return False
def on_event(self, event: Event) -> None:
"""Callback from the event stream. Notifies the controller of incoming events.
Args:
event (Event): The incoming event to process.
"""
# If we have a delegate that is not finished or errored, forward events to it
if self.delegate is not None:
delegate_state = self.delegate.get_agent_state()
if delegate_state not in (
AgentState.FINISHED,
AgentState.ERROR,
AgentState.REJECTED,
):
# Forward the event to delegate and skip parent processing
asyncio.get_event_loop().run_until_complete(
self.delegate._on_event(event)
)
return
else:
# delegate is done or errored, so end it
self.end_delegate()
return
# continue parent processing only if there's no active delegate
asyncio.get_event_loop().run_until_complete(self._on_event(event))
async def _on_event(self, event: Event) -> None:
if hasattr(event, 'hidden') and event.hidden:
return
# Give others a little chance
await asyncio.sleep(0.01)
# if the event is not filtered out, add it to the history
if not any(isinstance(event, filter_type) for filter_type in self.filter_out):
self.state.history.append(event)
if isinstance(event, Action):
await self._handle_action(event)
elif isinstance(event, Observation):
await self._handle_observation(event)
if self.should_step(event):
self.step()
async def _handle_action(self, action: Action) -> None:
"""Handles an Action from the agent or delegate."""
if isinstance(action, ChangeAgentStateAction):
await self.set_agent_state_to(action.agent_state) # type: ignore
elif isinstance(action, MessageAction):
await self._handle_message_action(action)
elif isinstance(action, AgentDelegateAction):
await self.start_delegate(action)
assert self.delegate is not None
# Post a MessageAction with the task for the delegate
if 'task' in action.inputs:
self.event_stream.add_event(
MessageAction(content='TASK: ' + action.inputs['task']),
EventSource.USER,
)
await self.delegate.set_agent_state_to(AgentState.RUNNING)
return
elif isinstance(action, AgentFinishAction):
self.state.outputs = action.outputs
self.state.metrics.merge(self.state.local_metrics)
await self.set_agent_state_to(AgentState.FINISHED)
elif isinstance(action, AgentRejectAction):
self.state.outputs = action.outputs
self.state.metrics.merge(self.state.local_metrics)
await self.set_agent_state_to(AgentState.REJECTED)
async def _handle_observation(self, observation: Observation) -> None:
"""Handles observation from the event stream.
Args:
observation (observation): The observation to handle.
"""
observation_to_print = copy.deepcopy(observation)
if len(observation_to_print.content) > self.agent.llm.config.max_message_chars:
observation_to_print.content = truncate_content(
observation_to_print.content, self.agent.llm.config.max_message_chars
)
# Use info level if LOG_ALL_EVENTS is set
log_level = 'info' if os.getenv('LOG_ALL_EVENTS') in ('true', '1') else 'debug'
self.log(
log_level, str(observation_to_print), extra={'msg_type': 'OBSERVATION'}
)
if observation.llm_metrics is not None:
self.agent.llm.metrics.merge(observation.llm_metrics)
# this happens for runnable actions and microagent actions
if self._pending_action and self._pending_action.id == observation.cause:
if self.state.agent_state == AgentState.AWAITING_USER_CONFIRMATION:
return
self._pending_action = None
if self.state.agent_state == AgentState.USER_CONFIRMED:
await self.set_agent_state_to(AgentState.RUNNING)
if self.state.agent_state == AgentState.USER_REJECTED:
await self.set_agent_state_to(AgentState.AWAITING_USER_INPUT)
return
elif isinstance(observation, ErrorObservation):
if self.state.agent_state == AgentState.ERROR:
self.state.metrics.merge(self.state.local_metrics)
async def _handle_message_action(self, action: MessageAction) -> None:
"""Handles message actions from the event stream.
Args:
action (MessageAction): The message action to handle.
"""
if action.source == EventSource.USER:
# Use info level if LOG_ALL_EVENTS is set
log_level = (
'info' if os.getenv('LOG_ALL_EVENTS') in ('true', '1') else 'debug'
)
self.log(
log_level,
str(action),
extra={'msg_type': 'ACTION', 'event_source': EventSource.USER},
)
# Extend max iterations when the user sends a message (only in non-headless mode)
if self._initial_max_iterations is not None and not self.headless_mode:
self.state.max_iterations = (
self.state.iteration + self._initial_max_iterations
)
if (
self.state.traffic_control_state == TrafficControlState.THROTTLING
or self.state.traffic_control_state == TrafficControlState.PAUSED
):
self.state.traffic_control_state = TrafficControlState.NORMAL
self.log(
'debug',
f'Extended max iterations to {self.state.max_iterations} after user message',
)
# try to retrieve microagents relevant to the user message
# set pending_action while we search for information
# if this is the first user message for this agent, matters for the microagent info type
first_user_message = self._first_user_message()
is_first_user_message = (
action.id == first_user_message.id if first_user_message else False
)
recall_type = (
RecallType.WORKSPACE_CONTEXT
if is_first_user_message
else RecallType.KNOWLEDGE
)
recall_action = RecallAction(query=action.content, recall_type=recall_type)
self._pending_action = recall_action
# this is source=USER because the user message is the trigger for the microagent retrieval
self.event_stream.add_event(recall_action, EventSource.USER)
if self.get_agent_state() != AgentState.RUNNING:
await self.set_agent_state_to(AgentState.RUNNING)
elif action.source == EventSource.AGENT:
# If the agent is waiting for a response, set the appropriate state
if action.wait_for_response:
await self.set_agent_state_to(AgentState.AWAITING_USER_INPUT)
def _reset(self) -> None:
"""Resets the agent controller."""
# Runnable actions need an Observation
# make sure there is an Observation with the tool call metadata to be recognized by the agent
# otherwise the pending action is found in history, but it's incomplete without an obs with tool result
if self._pending_action and hasattr(self._pending_action, 'tool_call_metadata'):
# find out if there already is an observation with the same tool call metadata
found_observation = False
for event in self.state.history:
if (
isinstance(event, Observation)
and event.tool_call_metadata
== self._pending_action.tool_call_metadata
):
found_observation = True
break
# make a new ErrorObservation with the tool call metadata
if not found_observation:
obs = ErrorObservation(content='The action has not been executed.')
obs.tool_call_metadata = self._pending_action.tool_call_metadata
obs._cause = self._pending_action.id # type: ignore[attr-defined]
self.event_stream.add_event(obs, EventSource.AGENT)
# NOTE: RecallActions don't need an ErrorObservation upon reset, as long as they have no tool calls
# reset the pending action, this will be called when the agent is STOPPED or ERROR
self._pending_action = None
self.agent.reset()
async def set_agent_state_to(self, new_state: AgentState) -> None:
"""Updates the agent's state and handles side effects. Can emit events to the event stream.
Args:
new_state (AgentState): The new state to set for the agent.
"""
self.log(
'info',
f'Setting agent({self.agent.name}) state from {self.state.agent_state} to {new_state}',
)
if new_state == self.state.agent_state:
return
if new_state in (AgentState.STOPPED, AgentState.ERROR):
# sync existing metrics BEFORE resetting the agent
await self.update_state_after_step()
self.state.metrics.merge(self.state.local_metrics)
self._reset()
elif new_state == AgentState.RUNNING:
# When the agent starts running from a paused state
if (
self.state.agent_state == AgentState.PAUSED
# TODO: do we really need both THROTTLING and PAUSED states, or can we clean up one of them completely?
and self.state.traffic_control_state == TrafficControlState.THROTTLING
):
# user intends to interrupt traffic control and let the task resume temporarily
self.state.traffic_control_state = TrafficControlState.PAUSED
# User has chosen to deliberately continue - lets double the max iterations
if (
self.state.iteration is not None
and self.state.max_iterations is not None
and self._initial_max_iterations is not None
and not self.headless_mode
):
if self.state.iteration >= self.state.max_iterations:
self.state.max_iterations += self._initial_max_iterations
if (
self.state.metrics.accumulated_cost is not None
and self.max_budget_per_task is not None
and self._initial_max_budget_per_task is not None
):
if self.state.metrics.accumulated_cost >= self.max_budget_per_task:
self.max_budget_per_task += self._initial_max_budget_per_task
elif self._pending_action is not None and (
new_state in (AgentState.USER_CONFIRMED, AgentState.USER_REJECTED)
):
if hasattr(self._pending_action, 'thought'):
self._pending_action.thought = '' # type: ignore[union-attr]
if new_state == AgentState.USER_CONFIRMED:
confirmation_state = ActionConfirmationStatus.CONFIRMED
else:
confirmation_state = ActionConfirmationStatus.REJECTED
self._pending_action.confirmation_state = confirmation_state # type: ignore[attr-defined]
self._pending_action._id = None # type: ignore[attr-defined]
self.event_stream.add_event(self._pending_action, EventSource.AGENT)
self.state.agent_state = new_state
# Create observation with reason field if it's an error state
reason = ''
if new_state == AgentState.ERROR:
reason = self.state.last_error
self.event_stream.add_event(
AgentStateChangedObservation('', self.state.agent_state, reason),
EventSource.ENVIRONMENT,
)
def get_agent_state(self) -> AgentState:
"""Returns the current state of the agent.
Returns:
AgentState: The current state of the agent.
"""
return self.state.agent_state
async def start_delegate(self, action: AgentDelegateAction) -> None:
"""Start a delegate agent to handle a subtask.
OpenHands is a multi-agentic system. A `task` is a conversation between
OpenHands (the whole system) and the user, which might involve one or more inputs
from the user. It starts with an initial input (typically a task statement) from
the user, and ends with either an `AgentFinishAction` initiated by the agent, a
stop initiated by the user, or an error.
A `subtask` is a conversation between an agent and the user, or another agent. If a `task`
is conducted by a single agent, then it's also a `subtask`. Otherwise, a `task` consists of
multiple `subtasks`, each executed by one agent.
Args:
action (AgentDelegateAction): The action containing information about the delegate agent to start.
"""
agent_cls: Type[Agent] = Agent.get_cls(action.agent)
agent_config = self.agent_configs.get(action.agent, self.agent.config)
llm_config = self.agent_to_llm_config.get(action.agent, self.agent.llm.config)
llm = LLM(config=llm_config, retry_listener=self._notify_on_llm_retry)
delegate_agent = agent_cls(llm=llm, config=agent_config)
state = State(
session_id=self.id.removesuffix('-delegate'),
inputs=action.inputs or {},
local_iteration=0,
iteration=self.state.iteration,
max_iterations=self.state.max_iterations,
delegate_level=self.state.delegate_level + 1,
# global metrics should be shared between parent and child
metrics=self.state.metrics,
# start on top of the stream
start_id=self.event_stream.get_latest_event_id() + 1,
)
self.log(
'debug',
f'start delegate, creating agent {delegate_agent.name} using LLM {llm}',
)
# Create the delegate with is_delegate=True so it does NOT subscribe directly
self.delegate = AgentController(
sid=self.id + '-delegate',
agent=delegate_agent,
event_stream=self.event_stream,
max_iterations=self.state.max_iterations,
max_budget_per_task=self.max_budget_per_task,
warning_budget_increment=self.warning_budget_increment,
agent_to_llm_config=self.agent_to_llm_config,
agent_configs=self.agent_configs,
initial_state=state,
is_delegate=True,
headless_mode=self.headless_mode,
)
def end_delegate(self) -> None:
"""Ends the currently active delegate (e.g., if it is finished or errored).
so that this controller can resume normal operation.
"""
if self.delegate is None:
return
delegate_state = self.delegate.get_agent_state()
# update iteration that is shared across agents
self.state.iteration = self.delegate.state.iteration
# close the delegate controller before adding new events
asyncio.get_event_loop().run_until_complete(self.delegate.close())
if delegate_state in (AgentState.FINISHED, AgentState.REJECTED):
# retrieve delegate result
delegate_outputs = (
self.delegate.state.outputs if self.delegate.state else {}
)
# prepare delegate result observation
# TODO: replace this with AI-generated summary (#2395)
formatted_output = ', '.join(
f'{key}: {value}' for key, value in delegate_outputs.items()
)
content = (
f'{self.delegate.agent.name} finishes task with {formatted_output}'
)
# emit the delegate result observation
obs = AgentDelegateObservation(outputs=delegate_outputs, content=content)
self.event_stream.add_event(obs, EventSource.AGENT)
else:
# delegate state is ERROR
# emit AgentDelegateObservation with error content
delegate_outputs = (
self.delegate.state.outputs if self.delegate.state else {}
)
content = (
f'{self.delegate.agent.name} encountered an error during execution.'
)
# emit the delegate result observation
obs = AgentDelegateObservation(outputs=delegate_outputs, content=content)
self.event_stream.add_event(obs, EventSource.AGENT)
# unset delegate so parent can resume normal handling
self.delegate = None
self.delegateAction = None
async def _step(self) -> None:
"""Executes a single step of the parent or delegate agent. Detects stuck agents and limits on the number of iterations and the task budget."""
if self.get_agent_state() != AgentState.RUNNING:
return
if self._pending_action:
return
self.log(
'info',
f'LEVEL {self.state.delegate_level} LOCAL STEP {self.state.local_iteration} GLOBAL STEP {self.state.iteration}',
extra={'msg_type': 'STEP'},
)
stop_step = False
if self.state.iteration >= self.state.max_iterations:
stop_step = await self._handle_traffic_control(
'iteration', self.state.iteration, self.state.max_iterations
)
# Check for warning budget increment
if (
self.state.metrics.accumulated_cost is not None
and self.warning_budget_increment is not None
and self.warning_budget_increment > 0
and self.get_agent_state() == AgentState.RUNNING
):
# Calculate the current threshold we're at and the next threshold
current_cost = self.state.metrics.accumulated_cost
current_threshold = (
int(current_cost / self.warning_budget_increment)
* self.warning_budget_increment
)
next_threshold = current_threshold + self.warning_budget_increment
# If we've just crossed a threshold (within 0.01 of the next threshold)
if (
current_cost >= next_threshold - 0.01
and current_cost < next_threshold + self.warning_budget_increment - 0.01
):
stop_step = await self._handle_traffic_control(
'warning_budget', current_cost, next_threshold
)
if self.max_budget_per_task is not None:
current_cost = self.state.metrics.accumulated_cost
if current_cost > self.max_budget_per_task:
stop_step = await self._handle_traffic_control(
'budget', current_cost, self.max_budget_per_task
)
if stop_step:
logger.warning('Stopping agent due to traffic control')
return
if self._is_stuck():
await self._react_to_exception(
AgentStuckInLoopError('Agent got stuck in a loop')
)
return
self.update_state_before_step()
action: Action = NullAction()
if self._replay_manager.should_replay():
# in replay mode, we don't let the agent to proceed
# instead, we replay the action from the replay trajectory
action = self._replay_manager.step()
else:
try:
action = self.agent.step(self.state)
if action is None:
raise LLMNoActionError('No action was returned')
action._source = EventSource.AGENT # type: ignore [attr-defined]
except (
LLMMalformedActionError,
LLMNoActionError,
LLMResponseError,
FunctionCallValidationError,
FunctionCallNotExistsError,
) as e:
self.event_stream.add_event(
ErrorObservation(
content=str(e),
),
EventSource.AGENT,
)
return
except (ContextWindowExceededError, BadRequestError, OpenAIError) as e:
# FIXME: this is a hack until a litellm fix is confirmed
# Check if this is a nested context window error
# We have to rely on string-matching because LiteLLM doesn't consistently
# wrap the failure in a ContextWindowExceededError
error_str = str(e).lower()
if (
'contextwindowexceedederror' in error_str
or 'prompt is too long' in error_str
or 'input length and `max_tokens` exceed context limit' in error_str
or isinstance(e, ContextWindowExceededError)
):
if self.agent.config.enable_history_truncation:
self._handle_long_context_error()
return
else:
raise LLMContextWindowExceedError()
else:
raise e
if action.runnable:
if self.state.confirmation_mode and (
type(action) is CmdRunAction or type(action) is IPythonRunCellAction
):
action.confirmation_state = (
ActionConfirmationStatus.AWAITING_CONFIRMATION
)
self._pending_action = action
if not isinstance(action, NullAction):
if (
hasattr(action, 'confirmation_state')
and action.confirmation_state
== ActionConfirmationStatus.AWAITING_CONFIRMATION
):
await self.set_agent_state_to(AgentState.AWAITING_USER_CONFIRMATION)
# Create and log metrics for frontend display
self._prepare_metrics_for_frontend(action)
self.event_stream.add_event(action, action._source) # type: ignore [attr-defined]
await self.update_state_after_step()
log_level = 'info' if LOG_ALL_EVENTS else 'debug'
self.log(log_level, str(action), extra={'msg_type': 'ACTION'})
def _notify_on_llm_retry(self, retries: int, max: int) -> None:
if self.status_callback is not None:
msg_id = 'STATUS$LLM_RETRY'
self.status_callback(
'info', msg_id, f'Retrying LLM request, {retries} / {max}'
)
async def _handle_traffic_control(
self, limit_type: str, current_value: float, max_value: float
) -> bool:
"""Handles agent state after hitting the traffic control limit.
Args:
limit_type (str): The type of limit that was hit.
current_value (float): The current value of the limit.
max_value (float): The maximum value of the limit.
"""
stop_step = False
if self.state.traffic_control_state == TrafficControlState.PAUSED:
self.log(
'debug', 'Hitting traffic control, temporarily resume upon user request'
)
self.state.traffic_control_state = TrafficControlState.NORMAL
else:
self.state.traffic_control_state = TrafficControlState.THROTTLING
# Format values as integers for iterations, keep decimals for budget and cost
if limit_type == 'iteration':
current_str = str(int(current_value))
max_str = str(int(max_value))
else:
current_str = f'{current_value:.2f}'
max_str = f'{max_value:.2f}'
if limit_type == 'warning_budget':
# Special handling for warning budget increment
await self.set_agent_state_to(AgentState.PAUSED)
if self.status_callback is not None:
next_threshold = (
max_value + self.warning_budget_increment
if self.warning_budget_increment
else 0
)
self.status_callback(
'warning',
'STATUS$COST_THRESHOLD_REACHED',
f'Cost threshold of ${max_str} USD reached. Current cost: ${current_str} USD. '
+ f'Next warning at ${next_threshold:.2f} USD. Please approve to continue.',
)
elif self.headless_mode:
e = RuntimeError(
f'Agent reached maximum {limit_type} in headless mode. '
f'Current {limit_type}: {current_str}, max {limit_type}: {max_str}'
)
await self._react_to_exception(e)
else:
e = RuntimeError(
f'Agent reached maximum {limit_type}. '
f'Current {limit_type}: {current_str}, max {limit_type}: {max_str}. '
)
# FIXME: this isn't really an exception--we should have a different path
await self._react_to_exception(e)
stop_step = True
return stop_step
def get_state(self) -> State:
"""Returns the current running state object.
Returns:
State: The current state object.
"""
return self.state
def set_initial_state(
self,
state: State | None,
max_iterations: int,
confirmation_mode: bool = False,
) -> None:
"""Sets the initial state for the agent, either from the previous session, or from a parent agent, or by creating a new one.
Args:
state: The state to initialize with, or None to create a new state.
max_iterations: The maximum number of iterations allowed for the task.
confirmation_mode: Whether to enable confirmation mode.
"""
# state can come from:
# - the previous session, in which case it has history
# - from a parent agent, in which case it has no history
# - None / a new state
# If state is None, we create a brand new state and still load the event stream so we can restore the history
if state is None:
self.state = State(
session_id=self.id.removesuffix('-delegate'),
inputs={},
max_iterations=max_iterations,
confirmation_mode=confirmation_mode,
)
self.state.start_id = 0
self.log(
'debug',
f'AgentController {self.id} - created new state. start_id: {self.state.start_id}',
)
else:
self.state = state
if self.state.start_id <= -1:
self.state.start_id = 0
self.log(
'debug',
f'AgentController {self.id} initializing history from event {self.state.start_id}',
)
# Always load from the event stream to avoid losing history
self._init_history()
def get_trajectory(self, include_screenshots: bool = False) -> list[dict]:
# state history could be partially hidden/truncated before controller is closed
assert self._closed
return [
event_to_trajectory(event, include_screenshots)
for event in self.state.history
]
def _init_history(self) -> None:
"""Initializes the agent's history from the event stream.
The history is a list of events that:
- Excludes events of types listed in self.filter_out
- Excludes events with hidden=True attribute
- For delegate events (between AgentDelegateAction and AgentDelegateObservation):
- Excludes all events between the action and observation
- Includes the delegate action and observation themselves
"""
# define range of events to fetch
# delegates start with a start_id and initially won't find any events
# otherwise we're restoring a previous session
start_id = self.state.start_id if self.state.start_id >= 0 else 0
end_id = (
self.state.end_id
if self.state.end_id >= 0
else self.event_stream.get_latest_event_id()