-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbicc_rst.c
224 lines (187 loc) · 5.2 KB
/
bicc_rst.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#include <sys/types.h>
#include "simple.h"
#include "graph.h"
#include "listrank.h"
#define NANO 1000000000
V* r_graph(int n,int m);
V* k_graph(int n, int k);
V* torus(int k);
E* span_gw_euler(V* graph,int nVertices,THREADED);
void Euler_scan_size_tree(int *Parent,int * Size,E* Tour,int n_edges,THREADED);
void Euler_scan_preorder(int *Parent,int * Preorder,E* Tour,int n_edges,THREADED);
/* still the tarjan viskin algorithm. Use the rooted spanning tree to euler tour approach*/
int bicc_rst(E* El, V* G, int n_vertices, int n_edges,THREADED)
{
int i,t,j,u,v,N,k;
int *Low, *High,*Parent,*Size,* Preorder,* D,*K,tree_edges,logn,opt,l,s;
hrtime_t start,end, s1,t1;
double interval,d1,d2,d3,total=0;
long seed;
E* El_tmp, *final_tour;
pardo(i,0,n_vertices,1)
G[i].v_attribute=-1;
node_Barrier();
s1 = gethrtime();
final_tour = span_gw_euler(G,n_vertices,TH);
node_Barrier();
t1 = gethrtime();
interval=t1-s1;
on_one printf("METRICS1: Time for span_gw_euler is %f\n",interval/NANO);
tree_edges = 2*(n_vertices-1);
logn = (int) log(n_vertices);
K=(int*) node_malloc(sizeof(int)*THREADS,TH);
Parent = (int *) node_malloc(sizeof(int)*n_vertices,TH);
Low = (int *) node_malloc(sizeof(int)*n_vertices,TH);
High = (int *) node_malloc(sizeof(int)*n_vertices,TH);
Preorder = (int *) node_malloc(sizeof(int)*n_vertices,TH);
Size = (int *) node_malloc(sizeof(int)*n_vertices,TH);
El_tmp = malloc(sizeof(E)*n_edges);
pardo(i,0,n_vertices,1){
Parent[i]=G[i].parent;
Preorder[i]=0;
Size[i]=0;
}
node_Barrier();
pardo(i,0,n_edges,1)
{
if(Parent[El[i].v1]==El[i].v2 || Parent[El[i].v2]==El[i].v1)
El[i].workspace=1;
}
node_Barrier();
start = gethrtime();
s1 = gethrtime();
Euler_scan_preorder(Parent,Preorder,final_tour,tree_edges,TH);
t1 = gethrtime();
interval = t1-s1;
on_one printf("METRICS:Time used for preorder tree is %f s\n", interval/NANO);
node_Barrier();
s1 = gethrtime();
Euler_scan_size_tree(Parent,Size,final_tour,tree_edges,TH);
t1 = gethrtime();
interval = t1-s1;
on_one printf("METRICS:Time used for size tree is %f s\n", interval/NANO);
interval = t1 - start;
on_one printf("METRICS1:Time used for tree computation is %f s\n", interval/NANO);
s1 = gethrtime();
Euler_get_lowhigh(El,Parent,Preorder,n_vertices,n_edges,0,Low,High, TH);
t1 = gethrtime();
interval = t1-s1;
on_one printf("METRICS1:Time used for Euler_get_lowhigh is %f s\n", interval/NANO);
s1 = gethrtime();
k=0;
pardo(i,0,n_edges,1)
{
if(El[i].workspace!=1 && Preorder[El[i].v2]<Preorder[El[i].v1]) {
El_tmp[k++]=El[i];
El_tmp[k].v2=El[i].v1;
El_tmp[k].v1=Parent[El[i].v1];
k++;
}
if(El[i].workspace!=1 && Preorder[El[i].v2]+Size[El[i].v2] <=Preorder[El[i].v1]) {
El_tmp[k].v1=El[i].v1;
El_tmp[k].v2=Parent[El[i].v1];
k++;
El_tmp[k].v1=El[i].v2;
El_tmp[k].v2=Parent[El[i].v2];
k++;
}
if(El[i].workspace==1 && El[i].v2!=0 && El[i].v2==Parent[El[i].v1] ) {
u = El[i].v1;
v= El[i].v2;
if(Low[u]<Preorder[v] || High[u]>=Preorder[v]+Size[v]){
El_tmp[k++]=El[i];
El_tmp[k].v1=v;
El_tmp[k].v2=Parent[v];
k++;
}
}
}
j = node_Reduce_i(k, SUM,TH);
on_one printf("METRICS: number of comp edges is %d\n", j);
t1 = gethrtime();
interval = t1-s1;
on_one printf("METRICS1:Time used for labeling comp edges is %f s\n", interval/NANO);
node_Barrier();
s1 = gethrtime();
connected_comp(El_tmp,n_vertices,k,TH);
t1 = gethrtime();
interval = t1 - s1;
interval = interval /NANO;
on_one printf("METRICS1: time used for conn_comps is %f s\n", interval);
node_free(Parent,TH);
node_free(Size,TH);
node_free(Preorder,TH);
node_Barrier();
node_free(Parent,TH);
node_free(Low,TH);
node_free(High,TH);
node_free(K,TH);
node_free(final_tour,TH);
free(El_tmp);
}
/* get the size of each subtree. Only prefix sum is enough because of the consecutive layout of the tour*/
void Euler_scan_size_tree(int *Parent,int * Size,E* Tour,int n_edges,THREADED)
{
#define twin workspace
int i,j;
int * buff;
buff = node_malloc(sizeof(int)*n_edges,TH);
pardo(i,0,n_edges,1){
if(Tour[i].v1==Parent[Tour[i].v2])
buff[i]=0;
else buff[i]=1;
}
node_Barrier();
prefix_sum(buff,n_edges,TH);
node_Barrier();
pardo(i,0,n_edges,1)
{
if(Parent[Tour[i].v1]==Tour[i].v2) {
Size[Tour[i].v1]= buff[i]-buff[Tour[i].twin];
}
}
#if debug
on_one {
printf("The values:\n");
for(i=0;i<n_edges;i++)
printf(" %d ", buff[i]);
printf("\n");
}
#endif
node_Barrier();
node_free(buff,TH);
on_one Size[0]=n_edges;
#undef twin
}
/* get the size of each subtree*/
void Euler_scan_preorder(int *Parent,int * Preorder,E* Tour,int n_edges,THREADED)
{
int i,j,*buff;
buff = node_malloc(sizeof(int)*n_edges,TH);
pardo(i,0,n_edges,1){
if(Tour[i].v1==Parent[Tour[i].v2])
buff[i]=1;
else buff[i]=0;
}
node_Barrier();
prefix_sum(buff, n_edges,TH);
node_Barrier();
node_Barrier();
pardo(i,0,n_edges,1)
{
if(Parent[Tour[i].v2]==Tour[i].v1) {
Preorder[Tour[i].v2]= buff[i];
}
}
#if debug
on_one {
printf("The values:\n");
for(i=0;i<n_edges;i++)
printf(" %d ", buff[i]);
printf("\n");
}
#endif
node_Barrier();
on_one Preorder[0] = 0;
node_free(buff,TH);
}