-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlistrank.c
212 lines (167 loc) · 5.73 KB
/
listrank.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/**********************************************************************************
NOTES: This listranking code is modified to return the prefix value of the last element in the list after the List Ranking operation is done. This prefix value is the total no of leaves for the rake operation. It does not return the list head pointer.
Last changed July 30 2002
**********************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "listrank.h"
#include "alg_random.h"
typedef struct master_d
{
LISTRANK_TYPE prefix;
LDATA succ;
LDATA index;
} master_t;
LDATA list_ranking(LDATA n, int k, list_t *List, THREADED)
{
register LDATA i, j, s, target, current, prev;
register LISTRANK_TYPE val;
LDATA block, start, finish, group, group_log, group_m1, times,
shift, div, rem, master_tail, result, v, *succ_ptr, succ, seed,error,
*Sums,tot,initial;
master_t *Master;
LDATA *Succ;
master_t *s_master_ptr;
list_t *list_ptr, *s_list_ptr, *f_list_ptr;
LDATA list_head_ptr;
//added to listrank.c code to determine total no leaves in the tree.
LDATA *totalnoleaves;
s = k * THREADS;
list_head_ptr = -1;
Sums = (LDATA *) node_malloc((THREADS)*sizeof(LDATA), TH);
Master = (master_t *) node_malloc((s+1)*sizeof(master_t),TH);
Succ = (LDATA *) node_malloc(n*sizeof(LDATA),TH);
totalnoleaves = (LDATA *) node_malloc(sizeof(LDATA),TH);
node_Barrier();
/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
/* FIND THE HEAD */
block = n/THREADS;
start = block * MYTHREAD;
finish = start + block;
if (MYTHREAD == THREADS-1) finish = n;
tot = 0;
for (i=start ; i<finish ; i++) {
tot += (Succ[i] = List[i].succ);
if (List[i].succ < 0) {
tot = tot - List[i].succ;
List[i].succ = -(s + 1);
}
}
Sums[MYTHREAD] = tot;
/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
/* IDENTIFY THE MASTERS */
s_master_ptr = Master + k * MYTHREAD;
group = n/s;
group_log = ((LDATA) floor((log((double) group)/log((double) 2))+0.1));
group_m1 = group - 1;
times = (LDATA) 31/group_log;
shift = 31 - times*group_log;
div = k/times;
rem = k - (times*div);
start = start - group;
current = -(k*MYTHREAD);
for (i=0 ; i<div ; i++) {
v = rrandom_th(TH);
target = ((v = (v >> shift)) & group_m1) + (start += group);
(++s_master_ptr) -> index = target;
s_master_ptr -> succ = List[target].succ;
List[target].succ = --current;
for (j=1;j<times;j++) {
target = ((v >>= group_log) & group_m1) + (start += group);
(++s_master_ptr) -> index = target;
s_master_ptr -> succ = List[target].succ;
List[target].succ = --current;
}
}
v = rrandom_th(TH);
v = (v >> shift);
for (i=0;i<rem;i++) {
target = ((v >>= group_log) & group_m1) + (start += group);
(++s_master_ptr) -> index = target;
s_master_ptr -> succ = List[target].succ;
List[target].succ = --current;
}
node_Barrier();
on_one {
tot = 0;
for (i=0 ; i<THREADS ; i++) {
tot += Sums[i];
}
list_head_ptr = (((n - 1)*n)/2) - tot;
if (List[list_head_ptr].succ < 0) {
Master -> succ = initial = -List[list_head_ptr].succ;
Master -> prefix = Master[initial].prefix = LISTRANK_IDENTITY;
}
else {
initial = 0;
Master -> prefix = LISTRANK_IDENTITY;
Master -> index = list_head_ptr;
Master -> succ = List[list_head_ptr].succ;
List[list_head_ptr].succ = 0;
}
}
node_Barrier();
/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
/* TRAVERSE THE SUBLISTS */
start = (k * MYTHREAD) + 1;
finish = start + k;
if ((MYTHREAD == 0) && (initial == 0))
start = 0;
for (i = start; i < finish; i++) {
current = Master[i].index;
val = List[current].prefix;
current = Master[i].succ;
if (current >= 0) { /* We aren't at the end of the list */
target = List[current].succ;
while (target >= 0) {
val = List[current].prefix = (val LISTRANK_OPERATOR List[current].prefix);
List[current].succ = - i;
current = target;
target = List[current].succ;
}
if (target > (- s - 1)) { /* We are at a new sublist */
Master[- target].prefix = val;
Master[i].succ = -target;
}
else { /* We are at the end of the list */
List[current].prefix = (val LISTRANK_OPERATOR List[current].prefix);
List[current].succ = - i;
}
}
}
node_Barrier();
/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
/* RANK THE MASTERS: */
on_one {
succ = Master -> succ;
current = 0;
for (i=0 ; i<s ; i++) {
Master[succ].prefix =
(Master[succ].prefix LISTRANK_OPERATOR Master[current].prefix);
current = succ;
succ = Master[current].succ;
}
}
node_Barrier();
/* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
/* COMPLETE THE RANK OF EVERY ELEMENT: */
s_list_ptr = List + (block * MYTHREAD) -1;
f_list_ptr = s_list_ptr + block;
if (MYTHREAD == THREADS - 1) f_list_ptr = List + n - 1;
succ_ptr = Succ + (block * MYTHREAD) - 1;
while ((++s_list_ptr) <= f_list_ptr) {
s_list_ptr->prefix = s_list_ptr->prefix LISTRANK_OPERATOR
Master[-s_list_ptr->succ].prefix;
s_list_ptr -> succ = *(++succ_ptr);
//added to listrank.c code to determine total no leaves in the tree.
if(s_list_ptr -> succ < 0)
*totalnoleaves = s_list_ptr->prefix;
}
node_free(Sums, TH);
node_free(Master, TH);
node_free(Succ, TH);
//return(node_Bcast_l(list_head_ptr,TH));
//added to listrank.c code to return total no leaves in the tree.
return(*totalnoleaves);
}