-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_classification.py
207 lines (149 loc) · 7.77 KB
/
main_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import csv
import random
import pathlib
import argparse
from tokenize import Double
import numpy as np
from tqdm import tqdm
from PIL import Image
import pandas as pd
import torch
import torchvision
from torch.nn import functional as F
from torchvision import transforms
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import D2NN_classification
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
class data_loader(Dataset):
def __init__(self, root, split, transform):
self.transform = transform
file_path = root+"\\"+split+"\\input\\data.xlsx"
self.data = np.array(pd.read_excel(file_path))
size = self.data.shape[1]
file_path = root+"\\"+split+"\\input\\data_1.xlsx"
self.data_1 = np.array(pd.read_excel(file_path))
file_path = root+"\\"+split+"\\gt\\label.xlsx"
self.label = np.array(pd.read_excel(file_path)).squeeze(0)
print(len(self.label),size)
assert size == len(self.label), "mismatched label' and img' length"
def __getitem__(self, index):
data = self.data[:,index] + self.data_1[:,index]
lbl = self.label[index]
return data, lbl
def __len__(self):
return len(self.label)
#######################// Tamsform //#####################################
trainTransform = transforms.Compose([
transforms.ToTensor()
])
testTransform = transforms.Compose([
transforms.ToTensor()
])
#######################// Data loader //##############################################
def main(args):
#################// Data loader //#############################3
train_set = data_loader(root = args.root_path, split = "train",
transform = trainTransform)
train_dataloader = DataLoader(dataset = train_set, batch_size = args.batch_size, shuffle = True )
test_set = data_loader(root = args.root_path, split = "test",
transform = trainTransform)
val_dataloader = DataLoader(dataset = test_set, batch_size = args.batch_size, shuffle = True)
if not os.path.exists(args.model_save_path):
os.mkdir(args.model_save_path)
model = D2NN_classification.Net()
model.cuda()
if args.whether_load_model:
model.load_state_dict(torch.load(args.model_save_path + str(args.start_epoch) + args.model_name))
print('Model : "' + args.model_save_path + str(args.start_epoch) + args.model_name + '" loaded.')
else:
if os.path.exists(args.result_record_path):
os.remove(args.result_record_path)
else:
with open(args.result_record_path, 'w') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(
['Epoch', 'Train_Loss', "Train_Acc", 'Val_Loss', "Val_Acc", "LR"])
criterion = torch.nn.MSELoss(reduction = "sum").cuda()
optimizer = torch.optim.Adam(model.parameters(), lr = args.lr, weight_decay = args.weight_decay)
for epoch in range(args.start_epoch + 1, args.start_epoch + 1 + args.num_epochs):
log = [epoch]
model.train()
train_len = 0.0
train_running_counter = 0.0
train_running_loss = 0.0
tk0 = tqdm(train_dataloader, ncols=100, total=int(len(train_dataloader)))
for train_iter, train_data_batch in enumerate(tk0):
train_images = train_data_batch[0].cuda()
train_labels = train_data_batch[1].cuda()
train_labels = F.one_hot(train_labels, num_classes=2)
train_images = torch.squeeze(train_images).cuda()
#train_images = torch.squeeze(torch.cat((train_images.unsqueeze(-1),
# torch.zeros_like(train_images.unsqueeze(-1))), dim=-1), dim=1)
train_outputs = model(train_images.float())
print(train_outputs)
print(train_labels)
train_loss_ = criterion(train_outputs, train_labels.float())
print(train_loss_)
train_counter_ = torch.eq(torch.argmax(train_labels, dim = 1), torch.argmax(train_outputs, dim = 1)).float().sum()
optimizer.zero_grad()
train_loss_.backward()
optimizer.step()
train_len += len(train_labels)
train_running_loss += train_loss_.item()
train_running_counter += train_counter_
train_loss = train_running_loss / train_len
train_accuracy = train_running_counter / train_len
log.append(train_loss)
log.append(train_accuracy)
with torch.no_grad():
model.eval()
val_len = 0.0
val_running_counter = 0.0
val_running_loss = 0.0
tk1 = tqdm(val_dataloader, ncols = 100, total = int(len(val_dataloader)))
for val_iter, val_data_batch in enumerate(tk1):
val_images = val_data_batch[0].cuda()
val_labels = val_data_batch[1].cuda()
val_labels = F.one_hot(val_labels, num_classes=2)
val_images = torch.squeeze(train_images).cuda()
#val_images = torch.squeeze(torch.cat((val_images.unsqueeze(-1),
# torch.zeros_like(val_images.unsqueeze(-1))), dim=-1), dim=1)
val_outputs = model(val_images.float())
val_loss_ = criterion(val_outputs, val_labels.float())
val_counter_ = torch.eq(torch.argmax(val_labels, dim=1), torch.argmax(val_outputs, dim=1)).float().sum()
val_len += len(val_labels)
val_running_loss += val_loss_.item()
val_running_counter += val_counter_
val_loss = val_running_loss / val_len
val_accuracy = val_running_counter / val_len
tk1.set_description_str('Epoch {}/{} : Validating'.format(epoch, args.start_epoch + 1 + args.num_epochs - 1))
tk1.set_postfix({'Val_Loss': '{:.5f}'.format(val_loss), 'Val_Accuarcy': '{:.5f}'.format(val_accuracy)})
log.append(val_loss)
log.append(val_accuracy)
torch.save(model.state_dict(), (args.model_save_path + str(epoch) + args.model_name))
print('Model : "' + args.model_save_path + str(epoch) + args.model_name + '" saved.')
with open(args.result_record_path, 'a', newline="") as csvfile:
writer = csv.writer(csvfile)
writer.writerow(log)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=2)
parser.add_argument('--num-epochs', type=int, default=200)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--lr', type=float, default=1e-3, help="learning rate")
parser.add_argument('--weight_decay', type=float, default=0.96)
parser.add_argument('--whether-load-model', type=bool, default=False, help="whether need to continus")
parser.add_argument('--start-epoch', type=int, default=0, help='which epoch')
parser.add_argument('--root_path', type=str, default=r"C:\Users\Dennis\Desktop\SHW\ANN\data")
parser.add_argument('--model-name', type=str, default='_model.pth')
parser.add_argument('--model-save-path', type=str, default="./saved_model/")
parser.add_argument('--result-record-path', type=pathlib.Path, default="./result.csv", help="saving path")
torch.backends.cudnn.benchmark = True
args_ = parser.parse_args()
random.seed(args_.seed)
np.random.seed(args_.seed)
torch.manual_seed(args_.seed)
main(args_)