-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathResume_matcher.py
208 lines (174 loc) · 6 KB
/
Resume_matcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from pymongo import MongoClient
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from operator import itemgetter
import tabulate
import sys
def connect_db():
try:
client = MongoClient(
'mongodb+srv://admin:[email protected]/myFirstDatabase?retryWrites=true&w=majority')
return client
except ValueError:
print("Value Error :", sys.exc_info()[0])
raise
except:
print("Unexpected error:", sys.exc_info()[0])
raise
client = connect_db()
import numpy as np
def levenshtein(seq1, seq2):
size_x = len(seq1) + 1
size_y = len(seq2) + 1
matrix = np.zeros((size_x, size_y))
for x in range(0, size_x):
matrix[x, 0] = x
for y in range(0, size_y):
matrix[0, y] = y
for x in range(1, size_x):
for y in range(1, size_y):
if seq1[x - 1] == seq2[y - 1]:
matrix[x, y] = min(
matrix[x - 1, y] + 1,
matrix[x - 1, y - 1],
matrix[x, y - 1] + 1
)
else:
matrix[x, y] = min(
matrix[x - 1, y] + 1,
matrix[x - 1, y - 1] + 1,
matrix[x, y - 1] + 1
)
return (matrix[size_x - 1, size_y - 1])
def getLowerDatasetCategory():
try:
data = pd.read_csv("./Datasets/category.csv")
return data["category"].tolist().lower()
except ValueError:
print("Value Error :", sys.exc_info()[0])
return []
except:
print("Unexpected error:", sys.exc_info()[0])
return []
def getLevenstien(category, word):
try:
word = word.lower().replace(" ", "")
min = 9999999
word_min_dist = ""
for cat in category:
dist = levenshtein(cat["lowerCategory"], word)
if (dist < min):
min = dist
word_min_dist = cat["category"]
return word_min_dist
except ValueError:
print("Value Error :", sys.exc_info()[0])
return ""
except:
print("Unexpected error:", sys.exc_info()[0])
return ""
def getScore(resume_arr, jd_arr):
score = 0
for idx in range(0, len(resume_arr)):
if (resume_arr[idx] == jd_arr[idx]):
score = score + 1
return (score / len(jd_arr))
def find_jd_by_details(client, details):
try:
db = client["Resume-parser"]
jd_collection = db.jobs
jd = jd_collection.find_one(details)
return jd
except ValueError:
print("Value Error :", sys.exc_info()[0])
return []
except:
print("Unexpected error:", sys.exc_info()[0])
return []
def getResumesWithCategory(category):
try:
db = client["Resume-parser"]
resume_collection = db.resumes
details = resume_collection.find({"category": category})
return details
except ValueError:
print("Value Error :", sys.exc_info()[0])
return []
except:
print("Unexpected error:", sys.exc_info()[0])
return []
def getSimmilarity(resume_skills, jd_skills, vectorizer1):
try:
resume_arr = vectorizer1.transform([" ".join(resume_skills)])
jd_arr = vectorizer1.transform([" ".join(jd_skills)])
# print(resume_arr.toarray(),jd_arr.toarray())
return getScore(resume_arr.toarray()[0], jd_arr.toarray()[0]) * 100
except ValueError:
print("Value Error :", sys.exc_info()[0])
return 0
except:
print("Unexpected error:", sys.exc_info()[0])
raise
def getTotalCategoryCleaned():
try:
data = pd.read_csv("./Datasets/category.csv")
category = data["category"].tolist()
cat = []
for i in category:
temp = i.replace("Jobs", "Profile")
i = i.replace(" ", "").lower().replace("jobs", "profile")
cat.append({"category": temp, "lowerCategory": i})
return cat
except ValueError:
print("Value Error :", sys.exc_info()[0])
return []
except:
print("Unexpected error:", sys.exc_info()[0])
return []
def printScoreBoard(resumes):
try:
if (len(resumes)):
header = resumes[0].keys()
rows = [x.values() for x in resumes]
print(tabulate.tabulate(rows, header, tablefmt='grid'))
else:
print("NO Resume found")
except ValueError:
print("Value Error :", sys.exc_info()[0])
except:
print("Unexpected error:", sys.exc_info()[0])
raise
def getMatchingResumes(jd, vectorizer1, thresh=30):
try:
categories = getTotalCategoryCleaned()
levenshtein_category = getLevenstien(categories, jd["category"])
# print(jd["category"],levenshtein_category)
resumes = getResumesWithCategory(levenshtein_category)
data = []
for resume in resumes:
ans = getSimmilarity(resume['skills'], jd['skills'], vectorizer1)
if (ans >= thresh and (resume['email'] != "" or resume['contact'] != "")):
data.append(
{"name": resume["filename"], "email": resume["email"], "contact": resume["contact"], "match": ans})
sortedReumes = sorted(data, key=itemgetter('match'), reverse=True)
printScoreBoard(sortedReumes)
except ValueError:
print("Value Error :", sys.exc_info()[0])
except:
print("Unexpected error:", sys.exc_info()[0])
raise
def getResumeRanking(jd_name):
try:
client = connect_db()
jd = find_jd_by_details(client, {"filename": jd_name})
vectorizer = CountVectorizer(tokenizer=lambda txt: txt.split())
vocabulary = vectorizer.fit([" ".join(jd["skills"])])
# print(vocabulary.get_feature_names())
getMatchingResumes(jd, vectorizer)
except ValueError:
print("Value Error :", sys.exc_info()[0])
except:
print("Unexpected error:", sys.exc_info()[0])
raise
if __name__ == "__main__":
getResumeRanking("jd05.pdf")