|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "__IMPORTANT INFO__\n", |
| 8 | + "<br>\n", |
| 9 | + "Note that you can find all the workshop materials under the following link, each session being marked as \"week_x\":\n", |
| 10 | + "<br>\n", |
| 11 | + "<br>\n", |
| 12 | + " [https://github.com/CodeHubOrg/python_workshops](https://github.com/CodeHubOrg/python_workshops)\n", |
| 13 | + "<br>\n", |
| 14 | + "<br>\n", |
| 15 | + "Download the data files by clicking on the 'Clone or download' green button, choose 'Download ZIP', then unzip from your downloads folder. We will update the material before each session." |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "markdown", |
| 20 | + "metadata": {}, |
| 21 | + "source": [ |
| 22 | + "# An Introduction to Python\n", |
| 23 | + "This workshop is divided into 5 parts:\n", |
| 24 | + "* An overview of the workshops\n", |
| 25 | + "* An introduction to how to install Python and a few Python tools on your machine using Anaconda\n", |
| 26 | + "* An short guide to using Jupyter notebooks\n", |
| 27 | + "* A short guide to using the PyCharm (for Anaconda) editor\n", |
| 28 | + "* A quick overview of the more important Python packages for data science projects" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "# Part 1. Python Workshops" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "markdown", |
| 40 | + "metadata": {}, |
| 41 | + "source": [ |
| 42 | + "| | | | |\n", |
| 43 | + "|:------|:-------|:--------------------------------------------|:----------------------------------------------------|\n", |
| 44 | + "| 1 |15.01.20|Setting up the Python environment |Overview of workshops |\n", |
| 45 | + "| | | |Python installation |\n", |
| 46 | + "| | | |Anaconda | \n", |
| 47 | + "| | | |Jupyter notebooks | \n", |
| 48 | + "| | | |PyCharm IDE for debugging | \n", |
| 49 | + "| | | |Jupyter notebooks |\n", |
| 50 | + "| | | |Packages and environments | " |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "markdown", |
| 55 | + "metadata": {}, |
| 56 | + "source": [ |
| 57 | + "| | | | |\n", |
| 58 | + "|:------|:-------|:--------------------------------------------|:----------------------------------------------------|\n", |
| 59 | + "| 2 |29.01.20|Data structures |Data types (string, integer, float) |\n", |
| 60 | + "| | | |Lists | \n", |
| 61 | + "| | | |Dictionaries |\n", |
| 62 | + "| | | |Arrays |" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "markdown", |
| 67 | + "metadata": {}, |
| 68 | + "source": [ |
| 69 | + "| | | | |\n", |
| 70 | + "|:------|:-------|:--------------------------------------------|:----------------------------------------------------|\n", |
| 71 | + "| 3 |12.02.20|Programming fundamentals I |Conditionals | \n", |
| 72 | + "| | | |For/while loops | \n", |
| 73 | + "| | | |Try/except statements | " |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "markdown", |
| 78 | + "metadata": {}, |
| 79 | + "source": [ |
| 80 | + "| | | | |\n", |
| 81 | + "|:------|:-------|:--------------------------------------------|:----------------------------------------------------|\n", |
| 82 | + "| 4 |26.02.20|Programming fundamentals II |Functions | \n", |
| 83 | + "| | | |Debugging in PyCharm |" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "markdown", |
| 88 | + "metadata": {}, |
| 89 | + "source": [ |
| 90 | + "| | | | |\n", |
| 91 | + "|:------|:-------|:--------------------------------------------|:----------------------------------------------------|\n", |
| 92 | + "| 5 |11.03.20|Working with data |Introduction to Pandas | \n", |
| 93 | + "| | | |Loading/saving/manipulating data with Pandas | " |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "| | | | |\n", |
| 101 | + "|:------|:-------|:--------------------------------------------|:----------------------------------------------------|\n", |
| 102 | + "| 6 |25.03.20|Vizualizations |Introduction to Matplotlib |" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "markdown", |
| 107 | + "metadata": {}, |
| 108 | + "source": [ |
| 109 | + "| | | | |\n", |
| 110 | + "|:------|:-------|:--------------------------------------------|:----------------------------------------------------|\n", |
| 111 | + "| 7 |08.04.20|Testing |Test your Python code |" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "markdown", |
| 116 | + "metadata": {}, |
| 117 | + "source": [ |
| 118 | + "# Part 2. Python/Python Tools Installation Guide \n", |
| 119 | + "We will be using Python 3.7 during this tutorial. To install Python, please use the instructions below.\n", |
| 120 | + "### Install Anaconda \n", |
| 121 | + "* go to the official Anaconda website **[https://www.anaconda.com/distribution/](https://www.anaconda.com/distribution/)** and download the installation corresponding to your machine, e.g, for MacOS:\n", |
| 122 | + "<img src=\"images/Screenshot1.png\" alt=\"Anaconda installation MacOS\" style=\"width: 600px;\"/>\n", |
| 123 | + "* Follow the installation instructions until the end. It might take a while if it's the first time you install it." |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "raw", |
| 128 | + "metadata": {}, |
| 129 | + "source": [ |
| 130 | + "### Anaconda Tools\n", |
| 131 | + "* Launch the Anaconda app\n", |
| 132 | + "<br>\n", |
| 133 | + "<img src=\"images/Anaconda_navigator.png\" alt=\"Launch the Anaconda navigator\" style=\"width: 600px;\"/>\n", |
| 134 | + "<br>\n", |
| 135 | + "* Browse through the available tools\n", |
| 136 | + "<br>\n", |
| 137 | + "<img src=\"images/Anaconda_tools.png\" alt=\"Anaconda tools\" style=\"width: 600px;\"/>\n", |
| 138 | + "<br>\n", |
| 139 | + "* Open a Jupyter notebook\n", |
| 140 | + "<br>\n", |
| 141 | + "<img src=\"images/Jupyter_cmd.png\" alt=\"Automatic launch of the command line\" style=\"width: 600px;\"/>\n", |
| 142 | + "<br>\n", |
| 143 | + "<img src=\"images/Jupyter_web.png\" alt=\"Jupyter notebook interface\" style=\"width: 600px;\"/>\n", |
| 144 | + "<br>\n", |
| 145 | + "<img src=\"images/Jupyter_web_WTH.png\" alt=\"Jupyter notebook\" style=\"width: 600px;\"/>" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "markdown", |
| 150 | + "metadata": {}, |
| 151 | + "source": [ |
| 152 | + "### Install PyCharm IDE\n", |
| 153 | + "* Install PyCharm IDE for Anaconda from **[https://www.jetbrains.com/pycharm/promo/anaconda/](https://www.jetbrains.com/pycharm/promo/anaconda/)** since we will be using this for part 4 of the tutorial. Make sure you install the free Community Edition version!\n", |
| 154 | + "<br>\n", |
| 155 | + "* IMPORTANT: Use the recommended installation defaults if it's the first time using PyCharm.\n", |
| 156 | + "<br>\n", |
| 157 | + "<img src=\"images/Screenshot6.png\" alt=\"PyCharm installation step 1\" style=\"width: 600px;\"/>" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "markdown", |
| 162 | + "metadata": {}, |
| 163 | + "source": [ |
| 164 | + "# Part 3. Jupyter notebooks " |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "markdown", |
| 169 | + "metadata": {}, |
| 170 | + "source": [ |
| 171 | + "## Jupyter modes" |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "markdown", |
| 176 | + "metadata": {}, |
| 177 | + "source": [ |
| 178 | + "### Command mode\n", |
| 179 | + "The cell is highlighted blue.\n", |
| 180 | + "<br>\n", |
| 181 | + "<img src=\"images/Jupyter_command_mode.png\" alt=\"Jupyter command mode\" style=\"width: 600px;\"/>\n", |
| 182 | + "### Edit mode\n", |
| 183 | + "The cell is highlighted green.\n", |
| 184 | + "<br>\n", |
| 185 | + "<img src=\"images/Jupyter_edit_mode.png\" alt=\"Jupyter edit mode\" style=\"width: 600px;\"/>" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "markdown", |
| 190 | + "metadata": {}, |
| 191 | + "source": [ |
| 192 | + "## Jupyter cell types" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "markdown", |
| 197 | + "metadata": {}, |
| 198 | + "source": [ |
| 199 | + "### Code\n", |
| 200 | + "<br>\n", |
| 201 | + "<img src=\"images/Jupyter_code.png\" alt=\"Jupyter code\" style=\"width: 600px;\"/>" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "markdown", |
| 206 | + "metadata": {}, |
| 207 | + "source": [ |
| 208 | + "### Markdown\n", |
| 209 | + "<br>\n", |
| 210 | + "<img src=\"images/Jupyter_markdown.png\" alt=\"Jupyter markdown\" style=\"width: 600px;\"/>" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "markdown", |
| 215 | + "metadata": {}, |
| 216 | + "source": [ |
| 217 | + "### Raw NBConvert\n", |
| 218 | + "<br>\n", |
| 219 | + "<img src=\"images/Jupyter_raw_nbconvert.png\" alt=\"Jupyter raw NBConvert\" style=\"width: 600px;\"/>" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "markdown", |
| 224 | + "metadata": {}, |
| 225 | + "source": [ |
| 226 | + "## Jupyter keyboard shortcuts\n", |
| 227 | + "<br>\n", |
| 228 | + "<img src=\"images/Jupyter_keyboard_1.png\" alt=\"Jupyter keyboard 1\" style=\"width: 600px;\"/>\n", |
| 229 | + "<br>\n", |
| 230 | + "<img src=\"images/Jupyter_keyboard_2.png\" alt=\"Jupyter keyboard 2\" style=\"width: 600px;\"/>\n", |
| 231 | + "<br>\n", |
| 232 | + "<img src=\"images/Jupyter_keyboard_3.png\" alt=\"Jupyter keyboard 3\" style=\"width: 600px;\"/>\n", |
| 233 | + "<br>\n", |
| 234 | + "<img src=\"images/Jupyter_keyboard_4.png\" alt=\"Jupyter keyboard 4\" style=\"width: 600px;\"/>" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "markdown", |
| 239 | + "metadata": {}, |
| 240 | + "source": [ |
| 241 | + "# Part 4. PyCharm for Anaconda\n", |
| 242 | + "### Setting up the Python environment\n", |
| 243 | + "* For your first Python project, use the Conda environment.\n", |
| 244 | + "<br>\n", |
| 245 | + "<img src=\"images/PyCharm_launch.png\" alt=\"PyCharm launch\" style=\"width: 600px;\"/>\n", |
| 246 | + "<br>\n", |
| 247 | + "<img src=\"images/PyCharm_create_project.png\" alt=\"PyCharm create project\" style=\"width: 600px;\"/>\n", |
| 248 | + "<br>\n", |
| 249 | + "<img src=\"images/Screenshot7.png\" alt=\"PyCharm set environment\" style=\"width: 600px;\"/>\n", |
| 250 | + "<br>\n", |
| 251 | + "* Congrats! You have created your first Python project in PyCharm! \n", |
| 252 | + "<br>\n", |
| 253 | + "* You can now try to run/debug a short example in PyCharm." |
| 254 | + ] |
| 255 | + }, |
| 256 | + { |
| 257 | + "cell_type": "markdown", |
| 258 | + "metadata": {}, |
| 259 | + "source": [ |
| 260 | + "### Run a script in Pycharm\n", |
| 261 | + "* First, add a file to your project. The file should print a line of text of your choice to the screen.\n", |
| 262 | + "<br>\n", |
| 263 | + "<img src=\"images/PyCharm_add_python_file1.png\" alt=\"PyCharm add file\" style=\"width: 600px;\"/>\n", |
| 264 | + "<br>\n", |
| 265 | + "<img src=\"images/PyCharm_add_python_file2.png\" alt=\"PyCharm add file\" style=\"width: 600px;\"/>\n", |
| 266 | + "<br>\n", |
| 267 | + "* Run the script and check what happens.\n", |
| 268 | + "<br>\n", |
| 269 | + "<img src=\"images/PyCharm_run_python_file1.png\" alt=\"PyCharm run file 1\" style=\"width: 600px;\"/>\n", |
| 270 | + "<br>\n", |
| 271 | + "<img src=\"images/PyCharm_run_python_file2.png\" alt=\"PyCharm run file 2\" style=\"width: 600px;\"/>" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "markdown", |
| 276 | + "metadata": {}, |
| 277 | + "source": [ |
| 278 | + "### Debug a script in Pycharm\n", |
| 279 | + "* Let's add a new print line and a breakpoint in front of this line. \n", |
| 280 | + "<br>\n", |
| 281 | + "<img src=\"images/PyCharm_debug_python_file1.png\" alt=\"PyCharm debug file 1\" style=\"width: 600px;\"/>\n", |
| 282 | + "<br>\n", |
| 283 | + "* Debug the file and check the variables.\n", |
| 284 | + "<br>\n", |
| 285 | + "<img src=\"images/PyCharm_debug_python_file2.png\" alt=\"PyCharm debug file 2\" style=\"width: 600px;\"/>\n", |
| 286 | + "<br>\n", |
| 287 | + "<img src=\"images/PyCharm_debug_python_file3.png\" alt=\"PyCharm debug file 3\" style=\"width: 600px;\"/>\n", |
| 288 | + "<br>\n", |
| 289 | + "<img src=\"images/PyCharm_debug_python_file4.png\" alt=\"PyCharm debug file 4\" style=\"width: 600px;\"/>" |
| 290 | + ] |
| 291 | + }, |
| 292 | + { |
| 293 | + "cell_type": "markdown", |
| 294 | + "metadata": {}, |
| 295 | + "source": [ |
| 296 | + "# Part 5. Python Packages\n", |
| 297 | + "There are a few Python packages which are useful te get familiarized with if you plan to work on data science projects" |
| 298 | + ] |
| 299 | + }, |
| 300 | + { |
| 301 | + "cell_type": "markdown", |
| 302 | + "metadata": {}, |
| 303 | + "source": [ |
| 304 | + "## Numpy\n", |
| 305 | + "The Numpy package is a powerful N-dimensional array object, whic allows you to do do fast operations with vectors and N-dimensional matrices. It is in particular useful for tasks which invlove linear algebra, Fourier transforms, and random number generation.\n", |
| 306 | + "<br>\n", |
| 307 | + "<img src=\"images/numpy_example.png\" alt=\"Numpy example\" style=\"width: 600px;\"/>" |
| 308 | + ] |
| 309 | + }, |
| 310 | + { |
| 311 | + "cell_type": "markdown", |
| 312 | + "metadata": {}, |
| 313 | + "source": [ |
| 314 | + "## Scipy\n", |
| 315 | + "SciPy builds on Numpy and provides a large number of functions that operate on numpy arrays and are useful for scientific and engineering applications.\n", |
| 316 | + "<br>\n", |
| 317 | + "<img src=\"images/scipy_example_1.png\" alt=\"Scipy example 1\" style=\"width: 600px;\"/>\n", |
| 318 | + "<br>\n", |
| 319 | + "<img src=\"images/scipy_example_2.png\" alt=\"Scipy example 2\" style=\"width: 400px;\"/>\n", |
| 320 | + "<br>\n", |
| 321 | + "<img src=\"images/scipy_example_3.png\" alt=\"Scipy example 3\" style=\"width: 400px;\"/>" |
| 322 | + ] |
| 323 | + }, |
| 324 | + { |
| 325 | + "cell_type": "markdown", |
| 326 | + "metadata": {}, |
| 327 | + "source": [ |
| 328 | + "## Matplotlib\n", |
| 329 | + "Matplotlib is a plotting package, which allows you to visualize your data.\n", |
| 330 | + "<br>\n", |
| 331 | + "<img src=\"images/matplotlib_example.png\" alt=\"Matplotlib example\" style=\"width: 600px;\"/>" |
| 332 | + ] |
| 333 | + }, |
| 334 | + { |
| 335 | + "cell_type": "markdown", |
| 336 | + "metadata": {}, |
| 337 | + "source": [ |
| 338 | + "## Pandas\n", |
| 339 | + "The Pandas package offers data structures and operations for manipulating numerical tables and time series.\n", |
| 340 | + "<br>\n", |
| 341 | + "<img src=\"images/Pandas_example.png\" alt=\"Pandas example\" style=\"width: 600px;\"/>" |
| 342 | + ] |
| 343 | + } |
| 344 | + ], |
| 345 | + "metadata": { |
| 346 | + "kernelspec": { |
| 347 | + "display_name": "Python 3", |
| 348 | + "language": "python", |
| 349 | + "name": "python3" |
| 350 | + }, |
| 351 | + "language_info": { |
| 352 | + "codemirror_mode": { |
| 353 | + "name": "ipython", |
| 354 | + "version": 3 |
| 355 | + }, |
| 356 | + "file_extension": ".py", |
| 357 | + "mimetype": "text/x-python", |
| 358 | + "name": "python", |
| 359 | + "nbconvert_exporter": "python", |
| 360 | + "pygments_lexer": "ipython3", |
| 361 | + "version": "3.7.4" |
| 362 | + } |
| 363 | + }, |
| 364 | + "nbformat": 4, |
| 365 | + "nbformat_minor": 2 |
| 366 | +} |
0 commit comments