-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqwen2_model.h
671 lines (586 loc) · 26.1 KB
/
qwen2_model.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
#include <random>
#define SAFETENSORS_CPP_IMPLEMENTATION
#include "safetensors.hh"
#include "json.hpp"
#include <net.h>
#include <layer.h>
#include <benchmark.h>
#include <arm_neon.h>
#include "utils.h"
#include "qwen2_layers.h"
#include "tokenizer.h"
using namespace ncnn;
class BasicModule {
public:
ncnn::Layer* cur_layer;
public:
ncnn::Blob* forward_1_1(ncnn::Blob* inp, std::vector<ncnn::Blob*>& net_blobs, std::vector<ncnn::Layer*>& net_layers) {
int cur_layer_idx = net_layers.size();
inp->consumer = cur_layer_idx;
ncnn::Blob* out = new ncnn::Blob();
out->name = "blob" + std::to_string(net_blobs.size());
out->producer = cur_layer_idx;
net_blobs.push_back(out);
net_layers.push_back(cur_layer);
int inp_idx = find_blob_idx_by_name(inp->name,net_blobs);
int out_idx = find_blob_idx_by_name(out->name,net_blobs);
cur_layer->bottoms = {inp_idx};
cur_layer->tops = {out_idx};
return out;
}
ncnn::Blob* forward_2_1(ncnn::Blob* inp0, ncnn::Blob* inp1, std::vector<ncnn::Blob*>& net_blobs, std::vector<ncnn::Layer*>& net_layers) {
int cur_layer_idx = net_layers.size();
inp0->consumer = cur_layer_idx;
inp1->consumer = cur_layer_idx;
ncnn::Blob* out = new ncnn::Blob();
out->name = "blob" + std::to_string(net_blobs.size());
out->producer = cur_layer_idx;
net_blobs.push_back(out);
net_layers.push_back(cur_layer);
int inp0_idx = find_blob_idx_by_name(inp0->name,net_blobs);
int inp1_idx = find_blob_idx_by_name(inp1->name,net_blobs);
int out_idx = find_blob_idx_by_name(out->name,net_blobs);
cur_layer->bottoms = {inp0_idx,inp1_idx};
cur_layer->tops = {out_idx};
return out;
}
std::tuple<ncnn::Blob*,ncnn::Blob*> forward_1_2(ncnn::Blob* inp, std::vector<ncnn::Blob*>& net_blobs, std::vector<ncnn::Layer*>& net_layers) {
int cur_layer_idx = net_layers.size();
inp->consumer = cur_layer_idx;
ncnn::Blob* out0 = new ncnn::Blob();
out0->name = "blob" + std::to_string(net_blobs.size());
out0->producer = cur_layer_idx;
net_blobs.push_back(out0);
ncnn::Blob* out1 = new ncnn::Blob();
out1->name = "blob" + std::to_string(net_blobs.size());
out1->producer = cur_layer_idx;
net_blobs.push_back(out1);
net_layers.push_back(cur_layer);
int inp_idx = find_blob_idx_by_name(inp->name,net_blobs);
int out0_idx = find_blob_idx_by_name(out0->name,net_blobs);
int out1_idx = find_blob_idx_by_name(out1->name,net_blobs);
cur_layer->bottoms = {inp_idx};
cur_layer->tops = {out0_idx,out1_idx};
return {out0,out1};
}
};
class Qwen2Attention : public BasicModule {
public:
ncnn::Layer* cur_layer;
int layer_idx;
public:
Qwen2Attention(std::string name, nlohmann::json& config, int layer_idx) : layer_idx(layer_idx) {
cur_layer = new Qwen2AttentionLayer();
cur_layer->name = name;
cur_layer->type = "Qwen2Attention";
// set param
ncnn::ParamDict pd;
int hidden_size = config["hidden_size"];
int num_heads = config["num_attention_heads"];
int head_dim = hidden_size / num_heads;
pd.set(0, hidden_size);// hidden_size
pd.set(1, num_heads);// num_heads
pd.set(2, head_dim);// head_dim
pd.set(3, int(config["quantization_config"]["group_size"]));// group_size
pd.set(4, int(config["quantization_config"]["bits"]));// bits
cur_layer->load_param(pd);
}
ncnn::Blob* forward(ncnn::Blob* inp, std::vector<ncnn::Blob*>& net_blobs, std::vector<ncnn::Layer*>& net_layers) {
int cur_layer_idx = net_layers.size();
net_layers.push_back(cur_layer);
// 输入、k、v绑定
inp->consumer = cur_layer_idx;
ncnn::Blob* ink = net_blobs[find_blob_idx_by_name("layer"+std::to_string(layer_idx)+".k.blob",net_blobs)];
ink->consumer = cur_layer_idx;
ncnn::Blob* inv = net_blobs[find_blob_idx_by_name("layer"+std::to_string(layer_idx)+".v.blob",net_blobs)];
inv->consumer = cur_layer_idx;
// 输出blob绑定
ncnn::Blob* out = new ncnn::Blob();
out->name = "blob" + std::to_string(net_blobs.size());
out->producer = cur_layer_idx;
net_blobs.push_back(out);
// 输出k绑定
ncnn::Blob* ouk = new ncnn::Blob();
ouk->name = "layer"+std::to_string(layer_idx)+".k.out";
ouk->producer = cur_layer_idx;
net_blobs.push_back(ouk);
// 输出v绑定
ncnn::Blob* ouv = new ncnn::Blob();
ouv->name = "layer"+std::to_string(layer_idx)+".v.out";
ouv->producer = cur_layer_idx;
net_blobs.push_back(ouv);
// 绑定blob到layer
cur_layer->bottoms = {
find_blob_idx_by_name(inp->name,net_blobs),
find_blob_idx_by_name(ink->name,net_blobs),
find_blob_idx_by_name(inv->name,net_blobs)};
cur_layer->tops = {
find_blob_idx_by_name(out->name,net_blobs),
find_blob_idx_by_name(ouk->name,net_blobs),
find_blob_idx_by_name(ouv->name,net_blobs)};
return out;
}
};
class Qwen2MLP : public BasicModule {
public:
Qwen2MLP(std::string name, nlohmann::json& config) {
cur_layer = new Qwen2MLPLayer();
cur_layer->name = name;
cur_layer->type = "Qwen2MLP";
// set param
ncnn::ParamDict pd;
pd.set(0, int(config["hidden_size"]));// hidden_size
pd.set(1, int(config["intermediate_size"]));// intermediate_size
pd.set(2, int(config["quantization_config"]["group_size"]));// group_size
pd.set(3, int(config["quantization_config"]["bits"]));// bits
cur_layer->load_param(pd);
}
};
class Qwen2RMSNorm : public BasicModule {
public:
Qwen2RMSNorm(std::string name, int hidden_size, float eps) {
cur_layer = new Qwen2RMSNormLayer();
cur_layer->name = name;
cur_layer->type = "Qwen2RMSNorm";
// set param
ncnn::ParamDict pd;
pd.set(0, hidden_size);// hidden_size
pd.set(1, eps);// eps
cur_layer->load_param(pd);
}
};
class Split : public BasicModule {
public:
Split(std::string name) {
cur_layer = ncnn::create_layer("Split");
cur_layer->name = name;
cur_layer->type = "Split";
}
};
class Add : public BasicModule {
public:
Add(std::string name) {
cur_layer = new AddLayer();
cur_layer->name = name;
cur_layer->type = "Add";
}
};
class Embedding : public BasicModule {
public:
Embedding(std::string name, int vocab_size, int hidden_size) {
cur_layer = new EmbeddingLayer();
cur_layer->name = name;
cur_layer->type = "Embedding";
// set param
ncnn::ParamDict pd;
pd.set(0, hidden_size);// num_output
pd.set(1, vocab_size);// input_dim
cur_layer->load_param(pd);
}
};
class Linear : public BasicModule {
public:
Linear(std::string name, nlohmann::json& config) {
cur_layer = new LMHeadLayer();
cur_layer->name = name;
cur_layer->type = "LMHead";
// set param
ncnn::ParamDict pd;
pd.set(0, int(config["vocab_size"]));// num_output
cur_layer->load_param(pd);
}
};
class Qwen2DecoderLayer : public BasicModule {
public:
Qwen2Attention* self_attn;
Qwen2MLP* mlp;
Qwen2RMSNorm* input_layernorm;
Qwen2RMSNorm* post_attention_layernorm;
Split* split0;
Add* add0;
Split* split1;
Add* add1;
public:
Qwen2DecoderLayer(std::string name, nlohmann::json& config, int layer_idx) {
name += ".";
self_attn = new Qwen2Attention(name + "self_attn", config, layer_idx);
mlp = new Qwen2MLP(name + "mlp", config);
input_layernorm = new Qwen2RMSNorm(name + "input_layernorm", config["hidden_size"], config["rms_norm_eps"]);
post_attention_layernorm = new Qwen2RMSNorm(name + "post_attention_layernorm", config["hidden_size"], config["rms_norm_eps"]);
split0 = new Split(name + "residual.split.0");
add0 = new Add(name + "residual.add.0");
split1 = new Split(name + "residual.split.1");
add1 = new Add(name + "residual.add.1");
}
ncnn::Blob* forward_1_1(ncnn::Blob* blob, std::vector<ncnn::Blob*>& net_blobs, std::vector<ncnn::Layer*>& net_layers) {
std::tuple<ncnn::Blob*,ncnn::Blob*> blob0_blob1 = split0->forward_1_2(blob,net_blobs,net_layers);
ncnn::Blob* blob0 = std::get<0>(blob0_blob1);
ncnn::Blob* blob1 = std::get<1>(blob0_blob1);
blob0 = input_layernorm->forward_1_1(blob0,net_blobs,net_layers);
blob0 = self_attn->forward(blob0,net_blobs,net_layers);
blob = add0->forward_2_1(blob0,blob1,net_blobs,net_layers);
std::tuple<ncnn::Blob*,ncnn::Blob*> blob2_blob3 = split1->forward_1_2(blob,net_blobs,net_layers);
ncnn::Blob* blob2 = std::get<0>(blob2_blob3);
ncnn::Blob* blob3 = std::get<1>(blob2_blob3);
blob2 = post_attention_layernorm->forward_1_1(blob2,net_blobs,net_layers);
blob2 = mlp->forward_1_1(blob2,net_blobs,net_layers);
blob = add1->forward_2_1(blob2,blob3,net_blobs,net_layers);
return blob;
}
};
class Qwen2Model : public BasicModule {
public:
Embedding* embed_tokens;
std::vector<Qwen2DecoderLayer*> layers;
Qwen2RMSNorm* norm;
public:
Qwen2Model(std::string name, nlohmann::json& config) {
name += ".";
embed_tokens = new Embedding(name + "embed_tokens", config["vocab_size"], config["hidden_size"]);
for (int i = 0; i < config["num_hidden_layers"]; i++)
layers.push_back(new Qwen2DecoderLayer(name + "layers." + std::to_string(i), config, i));
norm = new Qwen2RMSNorm(name + "norm", config["hidden_size"], config["rms_norm_eps"]);
}
ncnn::Blob* forward_1_1(ncnn::Blob* blob, std::vector<ncnn::Blob*>& net_blobs, std::vector<ncnn::Layer*>& net_layers) {
blob = embed_tokens->forward_1_1(blob,net_blobs,net_layers);
for (Qwen2DecoderLayer* layer : layers) {
blob = layer->forward_1_1(blob,net_blobs,net_layers);
}
blob = norm->forward_1_1(blob,net_blobs,net_layers);
return blob;
}
};
class Qwen2ForCausalLM : public BasicModule {
public:
Qwen2Model* model;
Linear* lm_head;
public:
Qwen2ForCausalLM(nlohmann::json& config) {
model = new Qwen2Model("model",config);
lm_head = new Linear("lm_head",config);
}
ncnn::Blob* forward_1_1(ncnn::Blob* blob, std::vector<ncnn::Blob*>& net_blobs, std::vector<ncnn::Layer*>& net_layers) {
blob = model->forward_1_1(blob,net_blobs,net_layers);
blob = lm_head->forward_1_1(blob,net_blobs,net_layers);
return blob;
}
};
std::tuple<std::vector<ncnn::Blob>,std::vector<ncnn::Layer*>> get_model(nlohmann::json& config, std::string save_path) {
// 创建模型
Qwen2ForCausalLM* model = new Qwen2ForCausalLM(config);
// 记录blob和layer
std::vector<ncnn::Blob*> p_blobs;
std::vector<ncnn::Layer*> layers;
// 准备输入节点
{
// blob
ncnn::Blob* blob = new ncnn::Blob();
blob->name = "input_ids";
blob->producer = 0;
p_blobs.push_back(blob);
// layer
ncnn::Layer* input = ncnn::create_layer("Input");
input->name = "input_ids";
input->type = "Input";
input->tops = {0};
layers.push_back(input);
}
// 准备kvcache
int num_layers = config["num_hidden_layers"];
for (int i = 0; i < num_layers; i++) {
// blob
ncnn::Blob* blob = new ncnn::Blob();
blob->name = "layer"+std::to_string(i)+".k.blob";
blob->producer = i+1;
p_blobs.push_back(blob);
// layer
ncnn::Layer* input = ncnn::create_layer("Input");
input->name = "layer"+std::to_string(i)+".k";
input->type = "Input";
input->tops = {i+1};
layers.push_back(input);
}
for (int i = 0; i < num_layers; i++) {
// blob
ncnn::Blob* blob = new ncnn::Blob();
blob->name = "layer"+std::to_string(i)+".v.blob";
blob->producer = i+1+num_layers;
p_blobs.push_back(blob);
// layer
ncnn::Layer* input = ncnn::create_layer("Input");
input->name = "layer"+std::to_string(i)+".v";
input->type = "Input";
input->tops = {i+1+num_layers};
layers.push_back(input);
}
// blob推理捕获图
ncnn::Blob* blob = p_blobs[find_blob_idx_by_name("input_ids",p_blobs)];
blob = model->forward_1_1(blob,p_blobs,layers);
// 保存以可视化
if (save_path != "") {
save(save_path,p_blobs,layers);
}
// 转换blob格式
std::vector<ncnn::Blob> blobs(p_blobs.size());
for (int i = 0; i < p_blobs.size(); i++) {
blobs[i] = std::move(*p_blobs[i]);
}
return {blobs,layers};
}
class Model {
public:
Model(std::string modelpath) {
opt.lightmode = true;
opt.num_threads = 4;
opt.use_bf16_storage = false;
opt.use_fp16_packed = false;
opt.use_fp16_storage = true;
opt.use_fp16_arithmetic = false;
opt.use_packing_layout = false;
// 加载模型配置
{
std::ifstream f(modelpath + "/config.json");
config = nlohmann::json::parse(f);
num_layers = config["num_hidden_layers"];
}
// 获取模型
std::tuple<std::vector<ncnn::Blob>,std::vector<ncnn::Layer*>> blobs_layers = get_model(config, "");
std::vector<ncnn::Blob> blobs = std::get<0>(blobs_layers);
std::vector<ncnn::Layer*> layers = std::get<1>(blobs_layers);
// 转换模型
net = new ncnn::Net();
net->opt = opt;
std::vector<Blob>& d_blobs = net->mutable_blobs();
std::vector<Layer*>& d_layers = net->mutable_layers();
d_blobs.resize((size_t)blobs.size());
d_layers.resize((size_t)layers.size());
for (int i = 0; i < blobs.size(); i++) {
d_blobs[i] = blobs[i];
}
for (int i = 0; i < layers.size(); i++) {
d_layers[i] = layers[i];
}
out_blob = "blob" + std::to_string(d_blobs.size()-1);
// 辅助层
{
Qwen2RotaryEmbedding rotary_emb(
(int)config["hidden_size"]/(int)config["num_attention_heads"],
(int)config["max_position_embeddings"],
(double)config["rope_theta"],
opt);
rotary_emb_cos_cached = rotary_emb.get_cos_cached();
rotary_emb_sin_cached = rotary_emb.get_sin_cached();
}
// 查找权重文件
std::vector<std::string> safetensor_files;
for (std::string& filename : getFilesInDirectory(modelpath)) {
if ((filename.find("model") != std::string::npos) &&
(filename.find(".safetensors") != std::string::npos) &&
(filename.find(".json") == std::string::npos)) {
safetensor_files.push_back(filename);
}
}
sts.resize(safetensor_files.size());
// 加载权重
for (int num_st = 0; num_st < safetensor_files.size(); num_st++) {
// 读取权重
std::string warn, err;
bool ret = safetensors::mmap_from_file(modelpath + "/" + safetensor_files[num_st], &sts[num_st], &warn, &err);
const uint8_t *databuffer{nullptr};
if (sts[num_st].mmaped) databuffer = sts[num_st].databuffer_addr;
else databuffer = sts[num_st].storage.data();
// 逐权重处理
for (size_t i = 0; i < sts[num_st].tensors.size(); i++) {
std::string key = sts[num_st].tensors.keys()[i];
safetensors::tensor_t tensor;
sts[num_st].tensors.at(i, &tensor);
if (key.find("model.embed_tokens") != std::string::npos) {
// share weight
ncnn::Mat data = load_weight(tensor,databuffer);
{
EmbeddingLayer* layer = (EmbeddingLayer*)get_layer("model.embed_tokens",layers);
if (key.find("quant") != std::string::npos) layer->quant_weight = data;
else if (key.find("scale") != std::string::npos) layer->weight_scale = data;
else { std::cout << "erro key: "; show_tensor_info(key,tensor); }
}
{
LMHeadLayer* layer = (LMHeadLayer*)get_layer("lm_head",layers);
if (key.find("quant") != std::string::npos && layer->quant_weight.empty()) layer->quant_weight = data;
else if (key.find("scale") != std::string::npos && layer->weight_scale.empty()) layer->weight_scale = data;
}
}
else if (key.find("lm_head") != std::string::npos) {
ncnn::Mat data = load_weight(tensor,databuffer);
LMHeadLayer* layer = (LMHeadLayer*)get_layer("lm_head",layers);
if (key.find("quant") != std::string::npos) layer->quant_weight = data;
else if (key.find("scale") != std::string::npos) layer->weight_scale = data;
else { std::cout << "erro key: "; show_tensor_info(key,tensor); }
}
else if ((key.find("layernorm.weight") != std::string::npos) || (key.find("model.norm") != std::string::npos)) {
std::vector<std::string> token = split(key,'.');
std::string layer_name = join(std::vector<std::string>(token.begin(),token.end()-1),'.');
Qwen2RMSNormLayer* layer = (Qwen2RMSNormLayer*)get_layer(layer_name,layers);
ncnn::Mat data = load_weight(tensor,databuffer);
layer->weight_data = data;
}
else if ((key.find("model.layers.") != std::string::npos) && (key.find(".self_attn") != std::string::npos)) {
std::vector<std::string> token = split(key,'.');
std::string weight_name = join(std::vector<std::string>(token.end()-2,token.end()),'.');
std::string layer_name = join(std::vector<std::string>(token.begin(),token.end()-2),'.');
Qwen2AttentionLayer* layer = (Qwen2AttentionLayer*)get_layer(layer_name,layers);
ncnn::Mat data = load_weight(tensor,databuffer);
if (weight_name == "q_proj.qweight") layer->q_proj_qweight_T = data;
else if (weight_name == "q_proj.scales") layer->q_proj_scales_T = data;
else if (weight_name == "q_proj.bias") layer->q_proj_bias = data;
else if (weight_name == "k_proj.qweight") layer->k_proj_qweight_T = data;
else if (weight_name == "k_proj.scales") layer->k_proj_scales_T = data;
else if (weight_name == "k_proj.bias") layer->k_proj_bias = data;
else if (weight_name == "v_proj.qweight") layer->v_proj_qweight_T = data;
else if (weight_name == "v_proj.scales") layer->v_proj_scales_T = data;
else if (weight_name == "v_proj.bias") layer->v_proj_bias = data;
else if (weight_name == "o_proj.qweight") layer->o_proj_qweight_T = data;
else if (weight_name == "o_proj.scales") layer->o_proj_scales_T = data;
else { std::cout << "erro key: "; show_tensor_info(key,tensor); }
if (layer->rotary_emb_cos_cached.empty() || layer->rotary_emb_sin_cached.empty()) {
layer->rotary_emb_cos_cached = rotary_emb_cos_cached;
layer->rotary_emb_sin_cached = rotary_emb_sin_cached;
}
}
else if ((key.find("model.layers.") != std::string::npos) && (key.find(".mlp") != std::string::npos)) {
std::vector<std::string> token = split(key,'.');
std::string weight_name = join(std::vector<std::string>(token.end()-2,token.end()),'.');
std::string layer_name = join(std::vector<std::string>(token.begin(),token.end()-2),'.');
Qwen2MLPLayer* layer = (Qwen2MLPLayer*)get_layer(layer_name,layers);
ncnn::Mat data = load_weight(tensor,databuffer);
if (weight_name == "gate_proj.qweight") layer->gate_proj_qweight_T = data;
else if (weight_name == "gate_proj.scales") layer->gate_proj_scales_T = data;
else if (weight_name == "up_proj.qweight") layer->up_proj_qweight_T = data;
else if (weight_name == "up_proj.scales") layer->up_proj_scales_T = data;
else if (weight_name == "down_proj.qweight") layer->down_proj_qweight_T = data;
else if (weight_name == "down_proj.scales") layer->down_proj_scales_T = data;
else { std::cout << "erro key: "; show_tensor_info(key,tensor); }
}
else { std::cout << "unused key: "; show_tensor_info(key,tensor); }
}
}
// 加载生成配置
{
std::ifstream f(modelpath + "/generation_config.json");
generation_config = nlohmann::json::parse(f);
}
}
ncnn::Mat forward(std::vector<int> ids) {
ncnn::Mat input_ids = ncnn::Mat(2*ids.size(),(void*)ids.data(),2u);
// set input
ncnn::Extractor ex = net->create_extractor();
ex.set_light_mode(true);
ex.input("input_ids", input_ids);
for (int i = 0; i < num_layers; i++) {
ex.input(("layer"+std::to_string(i)+".k.blob").c_str(), k_cache[i]);
ex.input(("layer"+std::to_string(i)+".v.blob").c_str(), v_cache[i]);
}
// get prob
ncnn::Mat out;
ex.extract(out_blob.c_str(), out);
// get real kv cache
for (int i = 0; i < num_layers; i++) {
ex.extract(("layer"+std::to_string(i)+".k.out").c_str(), k_cache[i], 1);
ex.extract(("layer"+std::to_string(i)+".v.out").c_str(), v_cache[i], 1);
}
return out;
}
std::string generate(std::vector<int>& input_ids, GPT2Tokenizer& tokenizer, const int max_new_token, bool random, bool stream, bool profile) {
int input_len = input_ids.size();
auto eos_token_id = generation_config["eos_token_id"];
// init kv cache
k_cache.resize(num_layers);
v_cache.resize(num_layers);
for (int i = 0; i < num_layers; i++) {
k_cache[i].create(0, 2u, 1, opt.workspace_allocator);
v_cache[i].create(0, 2u, 1, opt.workspace_allocator);
}
// prepare
int next_tokens = -1;
bool finish = false;
// performance
double prefill_ms = 0.0;
double decode_ms = 0.0;
std::string output = "";
while (!finish) {
ncnn::Mat next_token_logits;
if (next_tokens == -1) {
double start_time = ncnn::get_current_time();
next_token_logits = forward(input_ids); // prefill
double end_time = ncnn::get_current_time();
prefill_ms = end_time - start_time;
}
else {
double start_time = ncnn::get_current_time();
next_token_logits = forward({next_tokens}); // decode
double end_time = ncnn::get_current_time();
decode_ms += end_time - start_time;
}
if (random) {
logits_processor_RepetitionPenaltyLogitsProcessor(input_ids,next_token_logits,float(generation_config["repetition_penalty"]));
logits_warper_TopKLogitsWarper(next_token_logits,50,-FLOAT_INF);
logits_warper_TopPLogitsWarper(next_token_logits,float(generation_config["top_p"]),-FLOAT_INF,1);
softmax(next_token_logits);
next_tokens = multinomial(next_token_logits);
}
else {
next_tokens = argmax(next_token_logits);
}
input_ids.push_back(next_tokens);
if (input_ids.size() - input_len == max_new_token) {
finish = true;
}
for (auto eos : eos_token_id) {
if (next_tokens == eos) {
finish = true;
}
}
finish = finish || stopping_criteria_MaxLengthCriteria(input_ids,int(config["max_position_embeddings"]),int(config["max_position_embeddings"]));
output += tokenizer.decode_skip(next_tokens);
if (stream) {
std::cout << tokenizer.decode_skip(next_tokens) << std::flush;
}
}
if (stream) {
std::cout << std::endl;
}
prefill_ms = prefill_ms / input_len;
decode_ms = decode_ms / (input_ids.size()-input_len);
if (profile) {
std::cout << "prefill: " << 1000.0 / prefill_ms << " token/s" << std::endl;
std::cout << "decode: " << 1000.0 / decode_ms << " token/s" << std::endl;
}
return output;
}
void benchmark(GPT2Tokenizer& tokenizer, const int token_num) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(10, 10000);
std::vector<int> random_prefill_token;
for (int i = 0; i < token_num; i++) {
random_prefill_token.push_back(dis(gen));
}
auto output = generate(random_prefill_token, tokenizer, token_num, false, false, true);
}
void clear() {
net->mutable_blobs().clear();
net->mutable_layers().clear();
net->clear();
}
public:
nlohmann::json generation_config;
nlohmann::json config;
std::vector<safetensors::safetensors_t> sts;
int num_layers;
std::string out_blob;
ncnn::Mat rotary_emb_cos_cached;
ncnn::Mat rotary_emb_sin_cached;
std::vector<ncnn::Mat> k_cache;
std::vector<ncnn::Mat> v_cache;
ncnn::Option opt;
ncnn::Net* net;
};