-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
272 lines (227 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch.nn as nn
import torch
import os
import shutil
import datetime
import torch.cuda
import models
from prune import prune_net
from tools.optim_sche import get_optim_sche, CIFAR100_MILESTONES
from tools.get_data import get_train_loader, get_test_loader
from tools.get_parameters import get_args
from tools.flops_params import get_flops_params
def UpdateBnFactor():
for m in net.modules():
if isinstance(m, nn.BatchNorm2d):
m.weight.grad.data.add_(args.l * torch.sign(m.weight.data))
def train_epoch(fepoch, epoch):
net.train()
length = len(train_loader)
total_sample = len(train_loader.dataset)
total_loss = 0
correct_1 = 0
correct_5 = 0
batch_size = 0
for step, (x, y) in enumerate(train_loader):
x = x.cuda()
y = y.cuda()
if step == 0:
batch_size = len(y)
optimizer.zero_grad()
output = net(x)
loss = loss_function(output, y)
loss.backward()
if args.trainspflag:
UpdateBnFactor()
optimizer.step()
total_loss += (loss.item()/length)
_, predict = output.topk(5, 1, True, True)
# _, predict = torch.max(output, 1)
predict = predict.t()
correct = predict.eq(y.view(1, -1).expand_as(predict))
correct_1 += float(correct[:1].view(-1).sum())/total_sample
correct_5 += float(correct[:5].view(-1).sum())/total_sample
# correct += (predict == y).sum()
if step % 20 == 0:
print("Epoch:{}\t Step:{}\t TrainedSample:{}\t TotalSample:{}\t Loss:{:.3f}".format(
epoch + 1, step + 1, step * batch_size + len(y), total_sample, loss.item()
))
fepoch.write("Epoch:{}\t Loss:{:.3f}\t lr:{:.5f}\t acc1:{:.3%}\t acc5:{:.3%}\n".format(
epoch + 1, total_loss, optimizer.param_groups[0]['lr'], correct_1, correct_5
))
if args.trainspflag:
sum_scaling = 0
for m in net.modules():
if isinstance(m, nn.BatchNorm2d):
sum_scaling += torch.sum(torch.FloatTensor.abs(m.weight.data).view(-1))
fepoch.write("Scaling:{}\n".format(sum_scaling))
print("Scaling:{}".format(sum_scaling))
fepoch.flush()
return net
def eval_epoch(tnet):
tnet.eval()
length = len(test_loader)
total_sample = len(test_loader.dataset)
total_loss = 0
correct_1 = 0
correct_5 = 0
inference_time = 0
for step, (x, y) in enumerate(test_loader):
x = x.cuda()
y = y.cuda()
with torch.no_grad():
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
output = tnet(x)
# _, predict = torch.max(output, 1)
_, predict = output.topk(5, 1, True, True)
end.record()
# Waits for everything to finish running
torch.cuda.synchronize()
inference_time += (start.elapsed_time(end) / len(test_loader.dataset)) # milliseconds
loss = loss_function(output, y)
total_loss += (loss.item() / length)
predict = predict.t()
correct = predict.eq(y.view(1, -1).expand_as(predict))
correct_1 += float(correct[:1].view(-1).sum()) / total_sample
correct_5 += float(correct[:5].view(-1).sum()) / total_sample
# correct += (predict == y).sum()
acc1 = correct_1
acc5 = correct_5
return acc1, acc5, total_loss, inference_time
def training():
global best_acc
total_time = 0
is_best = False
if not os.path.exists(train_checkpoint_path):
os.makedirs(train_checkpoint_path)
with open(os.path.join(train_checkpoint_path, 'EpochLog.txt'), 'w') as fepoch:
with open(os.path.join(train_checkpoint_path, 'EvalLog.txt'), 'w') as feval:
with open(os.path.join(train_checkpoint_path, 'Best.txt'), 'w') as fbest:
print("start training")
for epoch in range(start_epoch, args.e):
train_epoch(fepoch, epoch)
print("evaluating")
accuracy1, accuracy5, averageloss, inference_time = eval_epoch(net)
feval.write("Epoch:{}\t Loss:{:.3f}\t lr:{:.5f}\t acc1:{:.3%}\t acc5:{:.3%}\n".format(
epoch + 1, averageloss, optimizer.param_groups[0]['lr'], accuracy1, accuracy5
))
feval.flush()
if scheduler is not None:
scheduler.step()
if accuracy1 > best_acc:
best_acc = accuracy1
is_best = True
else:
is_best = False
save_dict = {
'start_epoch': epoch + 1,
'model_state_dict': net.state_dict(),
'best_acc': best_acc,
'optimizer_state_dict': optimizer.state_dict(),
}
print("saving regular")
torch.save(save_dict, os.path.join(train_checkpoint_path, 'regularParam.pth'))
shutil.copyfile(os.path.join(train_checkpoint_path, 'regularParam.pth'),
os.path.join(most_recent_path, 'regularParam.pth'))
if is_best:
print("saving best")
shutil.copyfile(os.path.join(train_checkpoint_path, 'regularParam.pth'),
os.path.join(train_checkpoint_path, 'bestParam.pth'))
shutil.copyfile(os.path.join(train_checkpoint_path, 'regularParam.pth'),
os.path.join(most_recent_path, 'recent.pth'))
fbest.write("Epoch:{}\t Loss:{:.3f}\t lr:{:.5f}\t acc1:{:.3%}\t acc5:{:.3%}\n".format(
epoch + 1, averageloss, optimizer.param_groups[0]['lr'], accuracy1, accuracy5
))
fbest.flush()
# print(inference_time)
total_time += inference_time
print(total_time)
print(total_time / epoch)
if __name__ == '__main__':
# arguments from command line
args = get_args()
# data processing and prepare for training
train_loader = get_train_loader(args)
test_loader = get_test_loader(args)
loss_function = nn.CrossEntropyLoss()
best_acc = 0.
start_epoch = 0
# define checkpoint path
time = str(datetime.date.today() + datetime.timedelta(days=1))
checkpoint_path = os.path.join(args.save, args.net)
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
folder_name = None
if args.trainflag:
folder_name = "train"
elif args.retrainflag:
folder_name = "retrain"
elif args.pruneflag:
folder_name = "prune"
else:
folder_name = "trainsp"
train_checkpoint_path = os.path.join(checkpoint_path, folder_name, time)
most_recent_path = os.path.join(checkpoint_path, folder_name)
# define gpus and get net
device_ids = [int(i) for i in list(args.gpu.split(','))]
net = None
if args.retrainflag:
checkpoint = torch.load(os.path.join(os.path.join(checkpoint_path, 'prune'), 'prunedParam.pth'))
net = models.__dict__[args.net](cfg=checkpoint['cfg'])
net = nn.DataParallel(net, device_ids=device_ids)
net.load_state_dict(checkpoint['model_state_dict'])
else:
net = models.__dict__[args.net](cfg=None)
net = nn.DataParallel(net, device_ids=device_ids)
if args.pruneflag:
net.load_state_dict(torch.load(os.path.join(os.path.join(checkpoint_path, 'trainsp'), 'recent.pth'))
['model_state_dict'])
net = net.cuda()
# get optimizer and scheduler
optimizer, scheduler = get_optim_sche(args.lr, args.optim, net, args.dataset, args.momentum, args.wd)
if args.resumeflag:
print('load checkpoint to resume')
checkpoint = torch.load(os.path.join(most_recent_path, 'regularParam.pth'))
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['start_epoch']
best_acc = checkpoint['beat_acc']
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=CIFAR100_MILESTONES, gamma=0.1,
last_epoch=start_epoch-1)
# prune
if args.pruneflag:
if not os.path.exists(train_checkpoint_path):
os.makedirs(train_checkpoint_path)
cfg, new_net, net, ratio = prune_net(net, args.percent, args.net)
new_net = nn.DataParallel(new_net, device_ids=device_ids)
new_net = new_net.cuda()
# test the net after pruning(before real prune)
accuracy1, accuracy5, averageloss, inference_time = eval_epoch(net)
print("before real prune: Loss:{:.3f}\t acc1:{:.3%}\t acc5:{:.3%}\t infer:{:.5f}\n".format(
averageloss, accuracy1, accuracy5, inference_time))
# get param, flops and acc for pruned net
accuracy1, accuracy5, averageloss, inference_time = eval_epoch(new_net)
print("real prune: Loss:{:.3f}\t acc1:{:.3%}\t acc5:{:.3%}\t infer:{:.5f}\n".format(
averageloss, accuracy1, accuracy5, inference_time))
f, p = get_flops_params(new_net.module.cpu(), args.dataset)
new_net = new_net.cuda()
# save(cfg, state_dict)
with open(os.path.join(train_checkpoint_path, 'flops_and_params'), 'w') as fp:
fp.write("flops:{}\t params:{}\t ratio:{:.3f}\n".format(f, p, ratio))
fp.flush()
save_prune_dict = {
'model_state_dict': new_net.state_dict(),
'cfg': cfg
}
torch.save(save_prune_dict, os.path.join(train_checkpoint_path, 'prunedParam.pth'))
shutil.copyfile(os.path.join(train_checkpoint_path, 'prunedParam.pth'),
os.path.join(most_recent_path, 'prunedParam.pth'))
else:
f, p = get_flops_params(net.module.cpu(), args.dataset)
net = net.cuda()
with open(os.path.join(checkpoint_path, 'flops_and_params'), 'w') as fp:
fp.write("flops:{}\t params:{}\n".format(f, p))
fp.flush()
training()