Skip to content

Commit ff60279

Browse files
authored
Merge pull request #319 from Exabyte-io/feature/overview
2 parents 835e926 + 958c208 commit ff60279

File tree

2 files changed

+204
-0
lines changed

2 files changed

+204
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,203 @@
1+
# Specific Materials Examples
2+
3+
This document contains links to the tutorials that demonstrate how to reproduce material structures from published scientific manuscripts. Each entry lists the tutorial name and the corresponding manuscript reference.
4+
5+
---
6+
7+
## 1. Single-Material Structures
8+
9+
### 1.1. 2D Structures
10+
#### 1.1.1. [SrTiO3 Slab](slab-strontium-titanate.md) R. I. Eglitis and David Vanderbilt
11+
"First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces"
12+
Phys. Rev. B 77, 195408 (2008)
13+
14+
[DOI: 10.1103/PhysRevB.77.195408](https://doi.org/10.1103/PhysRevB.77.195408){:target='_blank'} [@Eglitis2008; @Mukhopadhyay2006]
15+
16+
![Strontium Titanate Slabs](../../../images/tutorials/materials/2d_materials/slab_strontium_titanate/0-figure-from-manuscript.webp "Strontium Titanate Slabs, FIG. 2.")
17+
18+
### 1.2. 0D Structures
19+
#### 1.2.1. [Gold Nanoclusters](nanocluster-gold.md)
20+
**A. H. Larsen, J. Kleis, K. S. Thygesen, J. K. Nørskov, and K. W. Jacobsen**,
21+
"Electronic shell structure and chemisorption on gold nanoparticles",
22+
*Phys. Rev. B 84, 245429 (2011)*,
23+
24+
[DOI: 10.1103/PhysRevB.84.245429](https://doi.org/10.1103/PhysRevB.84.245429){:target='_blank'}. [@Larsen2011]
25+
![Gold Nanoparticles](../../../images/tutorials/materials/0d_materials/nanocluster_gold/0-manuscript-image.webp "Fig. 2. Gold Nanoparticles")
26+
27+
---
28+
29+
## 2. Multi-Material Structures
30+
31+
### 2.1. Interfaces
32+
#### 2.1.1. [Interface between Graphene and h-BN](interface-2d-2d-graphene-boron-nitride.md)
33+
**Jeil Jung, Ashley M. DaSilva, Allan H. MacDonald & Shaffique Adam**
34+
"Origin of the band gap in graphene on hexagonal boron nitride"
35+
Nature Communications, 2015
36+
37+
[DOI: 10.1038/ncomms7308](https://doi.org/10.1038/ncomms7308){:target='_blank'}
38+
![Graphene on Hexagonal Boron Nitride](../../../images/tutorials/materials/interfaces/interface_2d_2d_graphene_boron_nitride/0-figure-from-manuscript.webp "Graphene on Hexagonal Boron Nitride, FIG. 7")
39+
40+
#### 2.1.2. [Interface between Graphene and SiO2 (alpha-quartz)](interface-2d-3d-graphene-silicon-dioxide.md)
41+
**Yong-Ju Kang, Joongoo Kang, and K. J. Chang**
42+
"Electronic structure of graphene and doping effect on SiO2"
43+
Physical Review B, 2008
44+
45+
[DOI: 10.1103/PhysRevB.78.115404](https://doi.org/10.1103/PhysRevB.78.115404){:target='_blank'}
46+
![Graphene on Silicon Dioxide](../../../images/tutorials/materials/interfaces/interface_2d_3d_graphene_silicon_dioxide/0-figure-from-manuscript.webp "Graphene on Silicon Dioxide, FIG. 1(b)")
47+
48+
#### 2.1.3. [Interface between Copper and SiO2 (Cristobalite)](interface-3d-3d-copper-silicon-dioxide.md)
49+
**Shan, T.-R., Devine, B. D., Phillpot, S. R., & Sinnott, S. B.**
50+
"Molecular dynamics study of the adhesion of Cu/SiO2interfaces using a variable-charge interatomic potential."
51+
Physical Review B, 83(11).
52+
53+
[DOI: 10.1103/PhysRevB.83.115327](https://doi.org/10.1103/PhysRevB.83.115327){:target='_blank'} [@Shan2011].
54+
![Copper on Cristobalite](../../../images/tutorials/materials/interfaces/interface_3d_3d_copper_cristobalite/0-figure-from-manuscript.webp "Copper on Cristobalite, FIG. 1")
55+
56+
#### 2.1.4. [High-k Metal Gate Stack (Si/SiO2/HfO2/TiN)](heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md)
57+
QuantumATK tutorial: [High-k Metal Gate Stack Builder](https://docs.quantumatk.com/tutorials/hkmg_builder/hkmg_builder.html) [@Muller1999; @Robertson2006]
58+
![High-k Metal Gate Stack](../../../images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/original-figure.webp "High-k Metal Gate Stack")
59+
60+
### 2.2. Twisted Interfaces
61+
#### 2.2.1. [Twisted Bilayer h-BN nanoribbons](interface-bilayer-twisted-nanoribbons-boron-nitride.md)
62+
**Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio**,
63+
"Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor" Phys. Rev. Lett. 125, 086402, 20 August 2020
64+
65+
[DOI: 10.1021/acs.nanolett.9b00986](https://doi.org/10.1021/acs.nanolett.9b00986){:target='_blank'} [@Xian2020]
66+
![Twisted Bilayer Boron Nitride](../../../images/tutorials/materials/interfaces/twisted-bilayer-boron-nitride/tbbn-paper-image.png "Twisted Bilayer Boron Nitride")
67+
68+
#### 2.2.2. [Twisted Bilayer MoS2 commensurate lattices](interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md)
69+
**Kaihui Liu, Liming Zhang, Ting Cao, Chenhao Jin, Diana Qiu, Qin Zhou, Alex Zettl, Peidong Yang, Steve G. Louie & Feng Wang**,
70+
"Evolution of interlayer coupling in twisted molybdenum disulfide bilayers" Nature Communications volume 5, Article number: 4966 (2014)
71+
72+
[DOI: 10.1038/ncomms5966](https://doi.org/10.1038/ncomms5966){:target='_blank'} [@Liu2014; @Zhang2016; @Cao2018]
73+
![Twisted Bilayer Molybdenum Disulfide](../../../images/tutorials/materials/interfaces/twisted-bilayer-molybdenum-disulfide/MoS2-twisted-bilayers.png "Twisted Bilayer Molybdenum Disulfide")
74+
75+
---
76+
77+
## 3. Defects
78+
79+
### 3.1. Point Defects
80+
#### 3.1.1. [Substitutional Point Defects in Graphene](defect-point-substitution-graphene.md)
81+
**Yoshitaka Fujimoto and Susumu Saito**
82+
"Formation, stabilities, and electronic properties of nitrogen defects in graphene"
83+
Physical Review B, 2011
84+
85+
[DOI: 10.1103/PhysRevB.84.245446](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245446){:target='_blank'}
86+
![Point Defect, Substitution, 0](../../../images/tutorials/materials/defects/defect_creation_point_substitution_graphene/0-figure-from-manuscript.webp "Point Defect, Substitution, FIG. 1.")
87+
88+
#### 3.1.2. [Vacancy-Substitution Pair Defects in GaN](defect-point-pair-gallium-nitride.md)
89+
**Giacomo Miceli, Alfredo Pasquarello**,
90+
"Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016.
91+
92+
[DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}. [@Miceli2016]
93+
![Point Pair Defects: Mg Substitution and Vacancy in GaN](../../../images/tutorials/materials/defects/defect_point_pair_gallium_nitride/0-figure-from-manuscript.webp "Point Defect Pair: Substitution, Vacancy in GaN, FIG. 2.")
94+
95+
#### 3.1.3. [Vacancy Point Defect in h-BN](defect-point-vacancy-boron-nitride.md)
96+
**Fabian Bertoldo, Sajid Ali, Simone Manti & Kristian S. Thygesen**
97+
"Quantum point defects in 2D materials – the QPOD database"
98+
Nature, 2022
99+
100+
[DOI: 10.1038/s41524-022-00730-w](https://doi.org/10.1038/s41524-022-00730-w){:target='_blank'}
101+
![Vacancy in h-BN](../../../images/tutorials/materials/defects/defect_point_vacancy_boron_nitride/0-figure-from-manuscript.webp "Vacancy in h-BN")
102+
103+
#### 3.1.4. [Interstitial Point Defect in SnO](defect-point-interstitial-tin-oxide.md)
104+
A. Togo, F. Oba, and I. Tanaka
105+
"First-principles calculations of native defects in tin monoxide"
106+
Physical Review B 74, 195128 (2006)
107+
108+
[DOI: 10.1103/PhysRevB.74.195128](https://doi.org/10.1103/PhysRevB.74.195128){:target='_blank'}. [@Togo2006; @Wang2014; @Na-Phattalung2006]
109+
![SnO O-interstitial](../../../images/tutorials/materials/defects/defect_point_interstitial_tin_oxide/0-figure-from-manuscript.webp "O-interstitial defect in SnO")
110+
111+
### 3.2. Surface Defects
112+
#### 3.2.1. [Island Surface Defect Formation in TiN](defect-surface-island-titanium-nitride.md)
113+
**D. G. Sangiovanni, A. B. Mei, D. Edström, L. Hultman, V. Chirita, I. Petrov, and J. E. Greene**,
114+
"Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands", Physical Review B, 2018.
115+
[DOI: 10.1103/PhysRevB.97.035406](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.035406){:target='_blank'}. [@Sangiovanni2018]
116+
![Surface Defect](../../../images/tutorials/materials/defects/defect-creation-surface-island-titanium-nitride/0.png "Surface Defect, Island FIG. 2. a")
117+
118+
#### 3.2.2. [Step Surface Defect on Pt(111)](defect-surface-step-platinum.md)
119+
Šljivančanin, Ž., & Hammer, B., "Oxygen dissociation at close-packed Pt terraces, Pt steps, and Ag-covered Pt steps studied with density functional theory." Surface Science, 515(1), 235–244.
120+
121+
[DOI: 10.1016/s0039-6028(02)01908-8](https://doi.org/10.1016/s0039-6028(02)01908-8){:target='_blank'}. [@Sljivancanin2002]
122+
![Fig. 1.](../../../images/tutorials/materials/defects/defect_surface_step_platinum/0-figure-from-manuscript.webp "Fig. 1.")
123+
124+
#### 3.2.3. [Adatom Surface Defects on Graphene](defect-surface-adatom-graphene.md)
125+
**Kevin T. Chan, J. B. Neaton, and Marvin L. Cohen**
126+
"First-principles study of metal adatom adsorption on graphene"
127+
Phys. Rev. B, 2008
128+
129+
[DOI: 10.1103/PhysRevB.77.235430](https://doi.org/10.1103/PhysRevB.77.235430){:target='_blank'}
130+
![Adatom on Graphene Surface](../../../images/tutorials/materials/defects/defect-surface-adatom-graphene/me_adatom_on_hollow_graphene.webp "Fig. 1. Adatom on Graphene Surface")
131+
132+
### 3.3. Planar Defects
133+
#### 3.3.1. [Grain Boundary in FCC Metals (Copper)](defect-planar-grain-boundary-3d-fcc-metals-copper.md)
134+
Timofey Frolov, David L. Olmsted, Mark Asta & Yuri Mishin, "Structural phase transformations in metallic grain boundaries", Nature Communications, volume 4, Article number: 1899 (2013).
135+
136+
[DOI: 10.1038/ncomms2919](https://www.nature.com/articles/ncomms2919){:target='_blank'}. [@Frolov2013]
137+
![Copper Grain Boundary](../../../images/tutorials/materials/defects/defect_planar_grain_boundary_3d_fcc_metal/0-figure-from-manuscript.webp "Copper Grain Boundary, FIG. 1")
138+
139+
#### 3.3.2. [Grain Boundary (2D) in h-BN](defect-planar-grain-boundary-2d-boron-nitride.md)
140+
**Qiucheng Li, et al.**
141+
"Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)"
142+
ACS Nano, 2015
143+
144+
[DOI: 10.1021/acs.nanolett.5b01852](https://doi.org/10.1021/acs.nanolett.5b01852){:target='_blank'}
145+
![h-BN Grain Boundary](../../../images/tutorials/materials/defects/defect_planar_grain_boundary_2d_boron_nitride/0-figure-from-manuscript.webp "h-BN Grain Boundary, FIG. 2c.")
146+
147+
---
148+
149+
## 4. Passivation
150+
151+
152+
### 4.1. Edge Passivation
153+
#### 4.1.1. [H-Passivated Silicon Nanowire](passivation-edge-nanowire-silicon.md)
154+
B. Aradi, L. E. Ramos, P. Deák, Th. Köhler, F. Bechstedt, R. Q. Zhang, and Th. Frauenheim,
155+
"Theoretical study of the chemical gap tuning in silicon nanowires"
156+
Phys. Rev. B 76, 035305 (2007)
157+
DOI: [10.1103/PhysRevB.76.035305](https://doi.org/10.1103/PhysRevB.76.035305){:target='_blank'} [@Aradi2007]
158+
![Passivated Silicon nanowire](../../../images/tutorials/materials/passivation/passivation_edge_nanowire_silicon/0-figure-from-manuscript.webp "Passivated Silicon nanowire, FIG. 1.")
159+
160+
161+
### 4.2. Surface Passivation
162+
#### 4.2.1. [H-Passivated Silicon (100) Surface](passivation-surface-silicon.md)
163+
Hansen, U., & Vogl, P.
164+
"Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study."
165+
Physical Review B, 57(20), 13295–13304. (1998)
166+
167+
[DOI: 10.1103/PhysRevB.57.13295](https://doi.org/10.1103/PhysRevB.57.13295){:target='_blank'}. [@Hansen1998; @Northrup1991; @Boland1990]
168+
![Si(100) H-Passivated Surface](../../../images/tutorials/materials/passivation/passivation_surface_silicon/0-figure-from-manuscript.webp "H-Passivated Silicon (100)")
169+
170+
---
171+
172+
## 5. Perturbations
173+
174+
175+
### 5.1. Ripples
176+
#### 5.1.1. [Ripple perturbation of a Graphene sheet](perturbation-ripples-graphene.md)
177+
Thompson-Flagg, R. C., Moura, M. J. B., & Marder, M.
178+
"Rippling of graphene"
179+
EPL (Europhysics Letters), 85(4), 46002 (2009)
180+
181+
[DOI: 10.1209/0295-5075/85/46002](https://doi.org/10.1209/0295-5075/85/46002){:target='_blank'}. [@ThompsonFlagg2009; @Fasolino2007; @Openov2010]
182+
![Rippled Graphene](../../../images/tutorials/materials/defects/perturbation_ripple_graphene/0-figure-from-manuscript.webp "Rippled Graphene, FIG. 1.")
183+
184+
---
185+
186+
## 6. Other
187+
188+
189+
### 6.1. Interface Optimization
190+
#### 6.1.1. [Gr/Ni(111) Interface Optimization](optimization-interface-film-xy-position-graphene-nickel.md)
191+
Arjun Dahal, Matthias Batzill
192+
"Graphene–nickel interfaces: a review"
193+
Nanoscale, 6(5), 2548. (2014)
194+
195+
[DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f){:target='_blank'}. [@Dahal2014; @Gamo1997; @Bertoni2004]
196+
![Gr/Ni Interface](../../../images/tutorials/materials/optimization/optimization_interface_film_xy_position_graphene_nickel/0-figure-from-manuscript.webp "Optimal position of graphene on Ni(111)")
197+
198+
#### 6.1.2. [Pt Adatoms Island on MoS2](defect-point-adatom-island-molybdenum-disulfide-platinum.md)
199+
Saidi, W. A.
200+
"Density Functional Theory Study of Nucleation and Growth of Pt Nanoparticles on MoS2(001) Surface"
201+
Crystal Growth & Design, 15(2), 642–652. (2015)
202+
203+
[DOI: 10.1021/cg5013395](https://doi.org/10.1021/cg5013395){:target='_blank'}. [@Saidi2015; @Jiao2016; @Fichthorn2000; @Neugebauer1993; @Hortamani2007]![Pt Island on MoS2](../../../images/tutorials/materials/defects/defect_point_adatom_island_molybdenum_disulfide_platinum/0-figure-from-manuscript.webp "Pt island formation on MoS2")

mkdocs.yml

+1
Original file line numberDiff line numberDiff line change
@@ -225,6 +225,7 @@ nav:
225225
- Import materials from files in various formats: tutorials/materials/import-from-files.md
226226

227227
- Reproducing Specific Manuscripts:
228+
- Overview: tutorials/materials/specific/overview.md
228229
- Substitutional Point Defects in Graphene: tutorials/materials/specific/defect-point-substitution-graphene.md
229230
- Vacancy-Substitution Pair Defects in GaN: tutorials/materials/specific/defect-point-pair-gallium-nitride.md
230231
- Vacancy Point Defect in h-BN: tutorials/materials/specific/defect-point-vacancy-boron-nitride.md

0 commit comments

Comments
 (0)