|
| 1 | +# Specific Materials Examples |
| 2 | + |
| 3 | +This document contains links to the tutorials that demonstrate how to reproduce material structures from published scientific manuscripts. Each entry lists the tutorial name and the corresponding manuscript reference. |
| 4 | + |
| 5 | +--- |
| 6 | + |
| 7 | +## 1. Single-Material Structures |
| 8 | + |
| 9 | +### 1.1. 2D Structures |
| 10 | +#### 1.1.1. [SrTiO3 Slab](slab-strontium-titanate.md) R. I. Eglitis and David Vanderbilt |
| 11 | +"First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces" |
| 12 | +Phys. Rev. B 77, 195408 (2008) |
| 13 | + |
| 14 | +[DOI: 10.1103/PhysRevB.77.195408](https://doi.org/10.1103/PhysRevB.77.195408){:target='_blank'} [@Eglitis2008; @Mukhopadhyay2006] |
| 15 | + |
| 16 | + |
| 17 | + |
| 18 | +### 1.2. 0D Structures |
| 19 | +#### 1.2.1. [Gold Nanoclusters](nanocluster-gold.md) |
| 20 | +**A. H. Larsen, J. Kleis, K. S. Thygesen, J. K. Nørskov, and K. W. Jacobsen**, |
| 21 | +"Electronic shell structure and chemisorption on gold nanoparticles", |
| 22 | +*Phys. Rev. B 84, 245429 (2011)*, |
| 23 | + |
| 24 | +[DOI: 10.1103/PhysRevB.84.245429](https://doi.org/10.1103/PhysRevB.84.245429){:target='_blank'}. [@Larsen2011] |
| 25 | + |
| 26 | + |
| 27 | +--- |
| 28 | + |
| 29 | +## 2. Multi-Material Structures |
| 30 | + |
| 31 | +### 2.1. Interfaces |
| 32 | +#### 2.1.1. [Interface between Graphene and h-BN](interface-2d-2d-graphene-boron-nitride.md) |
| 33 | +**Jeil Jung, Ashley M. DaSilva, Allan H. MacDonald & Shaffique Adam** |
| 34 | +"Origin of the band gap in graphene on hexagonal boron nitride" |
| 35 | +Nature Communications, 2015 |
| 36 | + |
| 37 | +[DOI: 10.1038/ncomms7308](https://doi.org/10.1038/ncomms7308){:target='_blank'} |
| 38 | + |
| 39 | + |
| 40 | +#### 2.1.2. [Interface between Graphene and SiO2 (alpha-quartz)](interface-2d-3d-graphene-silicon-dioxide.md) |
| 41 | +**Yong-Ju Kang, Joongoo Kang, and K. J. Chang** |
| 42 | +"Electronic structure of graphene and doping effect on SiO2" |
| 43 | +Physical Review B, 2008 |
| 44 | + |
| 45 | +[DOI: 10.1103/PhysRevB.78.115404](https://doi.org/10.1103/PhysRevB.78.115404){:target='_blank'} |
| 46 | +") |
| 47 | + |
| 48 | +#### 2.1.3. [Interface between Copper and SiO2 (Cristobalite)](interface-3d-3d-copper-silicon-dioxide.md) |
| 49 | +**Shan, T.-R., Devine, B. D., Phillpot, S. R., & Sinnott, S. B.** |
| 50 | +"Molecular dynamics study of the adhesion of Cu/SiO2interfaces using a variable-charge interatomic potential." |
| 51 | +Physical Review B, 83(11). |
| 52 | + |
| 53 | +[DOI: 10.1103/PhysRevB.83.115327](https://doi.org/10.1103/PhysRevB.83.115327){:target='_blank'} [@Shan2011]. |
| 54 | + |
| 55 | + |
| 56 | +#### 2.1.4. [High-k Metal Gate Stack (Si/SiO2/HfO2/TiN)](heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md) |
| 57 | +QuantumATK tutorial: [High-k Metal Gate Stack Builder](https://docs.quantumatk.com/tutorials/hkmg_builder/hkmg_builder.html) [@Muller1999; @Robertson2006] |
| 58 | + |
| 59 | + |
| 60 | +### 2.2. Twisted Interfaces |
| 61 | +#### 2.2.1. [Twisted Bilayer h-BN nanoribbons](interface-bilayer-twisted-nanoribbons-boron-nitride.md) |
| 62 | +**Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio**, |
| 63 | +"Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor" Phys. Rev. Lett. 125, 086402, 20 August 2020 |
| 64 | + |
| 65 | +[DOI: 10.1021/acs.nanolett.9b00986](https://doi.org/10.1021/acs.nanolett.9b00986){:target='_blank'} [@Xian2020] |
| 66 | + |
| 67 | + |
| 68 | +#### 2.2.2. [Twisted Bilayer MoS2 commensurate lattices](interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md) |
| 69 | +**Kaihui Liu, Liming Zhang, Ting Cao, Chenhao Jin, Diana Qiu, Qin Zhou, Alex Zettl, Peidong Yang, Steve G. Louie & Feng Wang**, |
| 70 | +"Evolution of interlayer coupling in twisted molybdenum disulfide bilayers" Nature Communications volume 5, Article number: 4966 (2014) |
| 71 | + |
| 72 | +[DOI: 10.1038/ncomms5966](https://doi.org/10.1038/ncomms5966){:target='_blank'} [@Liu2014; @Zhang2016; @Cao2018] |
| 73 | + |
| 74 | + |
| 75 | +--- |
| 76 | + |
| 77 | +## 3. Defects |
| 78 | + |
| 79 | +### 3.1. Point Defects |
| 80 | +#### 3.1.1. [Substitutional Point Defects in Graphene](defect-point-substitution-graphene.md) |
| 81 | +**Yoshitaka Fujimoto and Susumu Saito** |
| 82 | +"Formation, stabilities, and electronic properties of nitrogen defects in graphene" |
| 83 | +Physical Review B, 2011 |
| 84 | + |
| 85 | +[DOI: 10.1103/PhysRevB.84.245446](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245446){:target='_blank'} |
| 86 | + |
| 87 | + |
| 88 | +#### 3.1.2. [Vacancy-Substitution Pair Defects in GaN](defect-point-pair-gallium-nitride.md) |
| 89 | +**Giacomo Miceli, Alfredo Pasquarello**, |
| 90 | +"Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016. |
| 91 | + |
| 92 | +[DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}. [@Miceli2016] |
| 93 | + |
| 94 | + |
| 95 | +#### 3.1.3. [Vacancy Point Defect in h-BN](defect-point-vacancy-boron-nitride.md) |
| 96 | +**Fabian Bertoldo, Sajid Ali, Simone Manti & Kristian S. Thygesen** |
| 97 | +"Quantum point defects in 2D materials – the QPOD database" |
| 98 | +Nature, 2022 |
| 99 | + |
| 100 | +[DOI: 10.1038/s41524-022-00730-w](https://doi.org/10.1038/s41524-022-00730-w){:target='_blank'} |
| 101 | + |
| 102 | + |
| 103 | +#### 3.1.4. [Interstitial Point Defect in SnO](defect-point-interstitial-tin-oxide.md) |
| 104 | +A. Togo, F. Oba, and I. Tanaka |
| 105 | +"First-principles calculations of native defects in tin monoxide" |
| 106 | +Physical Review B 74, 195128 (2006) |
| 107 | + |
| 108 | +[DOI: 10.1103/PhysRevB.74.195128](https://doi.org/10.1103/PhysRevB.74.195128){:target='_blank'}. [@Togo2006; @Wang2014; @Na-Phattalung2006] |
| 109 | + |
| 110 | + |
| 111 | +### 3.2. Surface Defects |
| 112 | +#### 3.2.1. [Island Surface Defect Formation in TiN](defect-surface-island-titanium-nitride.md) |
| 113 | +**D. G. Sangiovanni, A. B. Mei, D. Edström, L. Hultman, V. Chirita, I. Petrov, and J. E. Greene**, |
| 114 | +"Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands", Physical Review B, 2018. |
| 115 | +[DOI: 10.1103/PhysRevB.97.035406](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.035406){:target='_blank'}. [@Sangiovanni2018] |
| 116 | + |
| 117 | + |
| 118 | +#### 3.2.2. [Step Surface Defect on Pt(111)](defect-surface-step-platinum.md) |
| 119 | +Šljivančanin, Ž., & Hammer, B., "Oxygen dissociation at close-packed Pt terraces, Pt steps, and Ag-covered Pt steps studied with density functional theory." Surface Science, 515(1), 235–244. |
| 120 | + |
| 121 | +[DOI: 10.1016/s0039-6028(02)01908-8](https://doi.org/10.1016/s0039-6028(02)01908-8){:target='_blank'}. [@Sljivancanin2002] |
| 122 | + |
| 123 | + |
| 124 | +#### 3.2.3. [Adatom Surface Defects on Graphene](defect-surface-adatom-graphene.md) |
| 125 | +**Kevin T. Chan, J. B. Neaton, and Marvin L. Cohen** |
| 126 | +"First-principles study of metal adatom adsorption on graphene" |
| 127 | +Phys. Rev. B, 2008 |
| 128 | + |
| 129 | +[DOI: 10.1103/PhysRevB.77.235430](https://doi.org/10.1103/PhysRevB.77.235430){:target='_blank'} |
| 130 | + |
| 131 | + |
| 132 | +### 3.3. Planar Defects |
| 133 | +#### 3.3.1. [Grain Boundary in FCC Metals (Copper)](defect-planar-grain-boundary-3d-fcc-metals-copper.md) |
| 134 | +Timofey Frolov, David L. Olmsted, Mark Asta & Yuri Mishin, "Structural phase transformations in metallic grain boundaries", Nature Communications, volume 4, Article number: 1899 (2013). |
| 135 | + |
| 136 | +[DOI: 10.1038/ncomms2919](https://www.nature.com/articles/ncomms2919){:target='_blank'}. [@Frolov2013] |
| 137 | + |
| 138 | + |
| 139 | +#### 3.3.2. [Grain Boundary (2D) in h-BN](defect-planar-grain-boundary-2d-boron-nitride.md) |
| 140 | +**Qiucheng Li, et al.** |
| 141 | +"Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)" |
| 142 | +ACS Nano, 2015 |
| 143 | + |
| 144 | +[DOI: 10.1021/acs.nanolett.5b01852](https://doi.org/10.1021/acs.nanolett.5b01852){:target='_blank'} |
| 145 | + |
| 146 | + |
| 147 | +--- |
| 148 | + |
| 149 | +## 4. Passivation |
| 150 | + |
| 151 | + |
| 152 | +### 4.1. Edge Passivation |
| 153 | +#### 4.1.1. [H-Passivated Silicon Nanowire](passivation-edge-nanowire-silicon.md) |
| 154 | +B. Aradi, L. E. Ramos, P. Deák, Th. Köhler, F. Bechstedt, R. Q. Zhang, and Th. Frauenheim, |
| 155 | +"Theoretical study of the chemical gap tuning in silicon nanowires" |
| 156 | +Phys. Rev. B 76, 035305 (2007) |
| 157 | +DOI: [10.1103/PhysRevB.76.035305](https://doi.org/10.1103/PhysRevB.76.035305){:target='_blank'} [@Aradi2007] |
| 158 | + |
| 159 | + |
| 160 | + |
| 161 | +### 4.2. Surface Passivation |
| 162 | +#### 4.2.1. [H-Passivated Silicon (100) Surface](passivation-surface-silicon.md) |
| 163 | +Hansen, U., & Vogl, P. |
| 164 | +"Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study." |
| 165 | +Physical Review B, 57(20), 13295–13304. (1998) |
| 166 | + |
| 167 | +[DOI: 10.1103/PhysRevB.57.13295](https://doi.org/10.1103/PhysRevB.57.13295){:target='_blank'}. [@Hansen1998; @Northrup1991; @Boland1990] |
| 168 | +") |
| 169 | + |
| 170 | +--- |
| 171 | + |
| 172 | +## 5. Perturbations |
| 173 | + |
| 174 | + |
| 175 | +### 5.1. Ripples |
| 176 | +#### 5.1.1. [Ripple perturbation of a Graphene sheet](perturbation-ripples-graphene.md) |
| 177 | +Thompson-Flagg, R. C., Moura, M. J. B., & Marder, M. |
| 178 | +"Rippling of graphene" |
| 179 | +EPL (Europhysics Letters), 85(4), 46002 (2009) |
| 180 | + |
| 181 | +[DOI: 10.1209/0295-5075/85/46002](https://doi.org/10.1209/0295-5075/85/46002){:target='_blank'}. [@ThompsonFlagg2009; @Fasolino2007; @Openov2010] |
| 182 | + |
| 183 | + |
| 184 | +--- |
| 185 | + |
| 186 | +## 6. Other |
| 187 | + |
| 188 | + |
| 189 | +### 6.1. Interface Optimization |
| 190 | +#### 6.1.1. [Gr/Ni(111) Interface Optimization](optimization-interface-film-xy-position-graphene-nickel.md) |
| 191 | +Arjun Dahal, Matthias Batzill |
| 192 | +"Graphene–nickel interfaces: a review" |
| 193 | +Nanoscale, 6(5), 2548. (2014) |
| 194 | + |
| 195 | +[DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f){:target='_blank'}. [@Dahal2014; @Gamo1997; @Bertoni2004] |
| 196 | +") |
| 197 | + |
| 198 | +#### 6.1.2. [Pt Adatoms Island on MoS2](defect-point-adatom-island-molybdenum-disulfide-platinum.md) |
| 199 | +Saidi, W. A. |
| 200 | +"Density Functional Theory Study of Nucleation and Growth of Pt Nanoparticles on MoS2(001) Surface" |
| 201 | +Crystal Growth & Design, 15(2), 642–652. (2015) |
| 202 | + |
| 203 | +[DOI: 10.1021/cg5013395](https://doi.org/10.1021/cg5013395){:target='_blank'}. [@Saidi2015; @Jiao2016; @Fichthorn2000; @Neugebauer1993; @Hortamani2007] |
0 commit comments