-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
75 lines (65 loc) · 2.26 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import wget
import streamlit as st
from llama_index import (
SimpleDirectoryReader,
VectorStoreIndex,
ServiceContext,
)
from llama_index.llms import LlamaCPP
from llama_index.llms.llama_utils import (
messages_to_prompt,
completion_to_prompt,
)
from langchain.schema import(SystemMessage, HumanMessage, AIMessage)
def bar_custom(current, total, width=80):
print("Downloading %d%% [%d / %d] bytes" % (current / total * 100, current, total))
model_url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/resolve/main/llama-2-7b-chat.Q2_K.gguf"
wget.download(model_url, bar=bar_custom)
def init_page():
st.set_page_config(
page_title="Personal Chatbot"
)
st.header("Personal Chatbot")
st.sidebar.title("Options")
def select_llm():
return LlamaCPP(
model_path="llama-2-7b-chat.Q2_K.gguf",
temperature=0.1,
max_new_tokens=500,
context_window=3900,
generate_kwargs={},
model_kwargs={"n_gpu_layers":1},
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
verbose=True,
)
def init_messages():
clear_button = st.sidebar.button("Clear Conversation", key="clear")
if clear_button or "messages" not in st.session_state:
st.session_state.messages = [
SystemMessage(
content="you are a helpful AI assistant. Reply your answer in markdown format."
)
]
def get_answer(llm, messages):
response = llm.complete(messages)
return response.text
def main():
init_page()
llm = select_llm()
init_messages()
if user_input := st.text_input("Input your question!"):
st.session_state.messages.append(HumanMessage(content=user_input))
with st.spinner("Bot is typing ..."):
answer = get_answer(llm, user_input)
st.session_state.messages.append(AIMessage(content=answer))
messages = st.session_state.get("messages", [])
for message in messages:
if isinstance(message, AIMessage):
with st.beta_container():
st.markdown(message.content)
elif isinstance(message, HumanMessage):
with st.beta_container():
st.markdown(message.content)
if __name__ == "__main__":
main()