-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolutional_nn.py
140 lines (114 loc) · 4.99 KB
/
convolutional_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim
from torchvision.datasets import CIFAR10
from torchvision import transforms
import matplotlib.pyplot as plt
import seaborn as sns
# Here we implement an autoencoder using convolutional neural networks
size=32
base_channel_size=3
hid_channel_size=64
latent_size=16
num_epoch=4
batch_size=100
clip_grad_norm_val=10
lr=0.001
class layer_encoder(nn.Module):
def __init__(self, size, base_channel_size, hid_channel_size, latent_size):
super().__init__()
self.size=size # (batch_size, base_channel_size, size, size)
self.base_channel_size=base_channel_size
self.hid_channel_size=hid_channel_size
self.latent_size=latent_size
self.layers=nn.Sequential(
nn.Conv2d(self.base_channel_size,self.hid_channel_size,kernel_size=3,padding=1,stride=2), # (batch_size, base_channel_size, size, size) -> (batch_size, hid_channel_size, size//2, size//2)
nn.ReLU(),
)
self.conversion_layer=nn.Sequential(
nn.Flatten(), # (batch_size, hid_channel_size, size//2, size//2) -> (batch_size, hid_channel_size*size//2*size//2)
nn.Linear(self.hid_channel_size*self.size*self.size//4,self.latent_size) # (batch_size, hid_channel_size*size//2*size//2) -> (batch_size, latent_size)
)
def forward(self,x):
x=self.layers(x)
x=self.conversion_layer(x)
return x
class layer_decoder(nn.Module):
def __init__(self, size, base_channel_size, hid_channel_size, latent_size):
super().__init__()
self.size=size # (batch_size, base_channel_size, size, size)
self.base_channel_size=base_channel_size
self.hid_channel_size=hid_channel_size
self.latent_size=latent_size
self.conversion_layer=nn.Sequential(
nn.Linear(self.latent_size,self.hid_channel_size*self.size*self.size//4),
)
self.layers=nn.Sequential(
nn.ConvTranspose2d(self.hid_channel_size, self.base_channel_size,kernel_size=3,padding=1, output_padding=1,stride=2), # (batch_size, base_channel_size, size, size) <- (batch_size, hid_channel_size, size//2, size//2)
nn.ReLU(), # image values are between 0,1
)
def forward(self,x):
x=self.conversion_layer(x)
batch_size=x.shape[0]
x=x.reshape(batch_size,self.hid_channel_size,self.size//2,self.size//2)
x=self.layers(x)
return x
class auto_encoder(nn.Module):
def __init__(self,layer_encoder,layer_decoder, size, base_channel_size, hid_channel_size, latent_size):
super().__init__()
self.size=size
self.base_channel_size=base_channel_size
self.hid_channel_size=hid_channel_size
self.latent_size=latent_size
self.encoder=layer_encoder(size, base_channel_size, hid_channel_size, latent_size)
self.decoder=layer_decoder(size, base_channel_size, hid_channel_size, latent_size)
def forward(self,x):
x=self.encoder(x)
x=self.decoder(x)
return x
auto_encoder=auto_encoder(layer_encoder,layer_decoder,size, base_channel_size, hid_channel_size, latent_size)
print(auto_encoder)
def initialize_weights(model):
for name, pram in model.named_parameters():
if "weight" in name:
pram.data.normal_(std=torch.sqrt(torch.tensor(2)/(pram.shape[0]+pram.shape[1])))
elif "bias" in name:
pram.data.fill_(0)
initialize_weights(auto_encoder)
optimizer=optim.Adam(auto_encoder.parameters(), lr=lr)
loss_function=nn.MSELoss()
transform = transforms.Compose([
transforms.ToTensor()
]) # convert the image to tensor
dataset= CIFAR10(root='./',train=True, download=True, transform =transform)
dataloader=data.DataLoader(dataset,batch_size=batch_size,shuffle=True)
sample_data, sample_label=next(iter(dataloader))
#print(sample_data) # (batch_size, base_channel_size, size, size)
class trainer(nn.Module):
def __init__(self,model, dataloader, loss_function, optimizer, num_epoch=2):
super().__init__()
self.model=model
self.dataloader=dataloader
self.loss_function=loss_function
self.optimizer=optimizer
self.num_epoch=num_epoch
def forward(self):
model=self.model.to("mps")
model.train()
for epoch in torch.arange(self.num_epoch):
epoch_loss=0
for data, label in self.dataloader:
data=data.to("mps")
label=label.to("mps")
self.optimizer.zero_grad()
pred=model(data)
loss=self.loss_function(pred, data)
loss.backward()
#nn.utils.clip_grad_norm_(model.parameters(),clip_grad_norm_val)
self.optimizer.step()
epoch_loss+=loss.item()
print(f"Epoch {epoch+1} Loss: {epoch_loss/len(self.dataloader)}")
trainer=trainer(auto_encoder, dataloader, loss_function, optimizer, num_epoch)
trainer()