-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer_II.py
194 lines (158 loc) · 8.02 KB
/
transformer_II.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim
from datasets import load_dataset
from transformers import AutoTokenizer
import matplotlib.pyplot as plt
import seaborn as sns
seq_len=10
embed_dim=16
num_heads=8
feed_forward_ratio=4
size=100
batch_size=2
device="cuda"
class MultiheadAttention(nn.Module):
def __init__(self, embed_dim,num_heads):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
def forward(self,q,k,v,mask=None): # q,k,v has shape [batch_size,seq_len,embed_dim]
batch_size=q.shape[0]
seq_len = q.shape[1]
q = q.reshape(batch_size,seq_len,self.num_heads,self.head_dim).permute(0,2,1,3) # [batch_size,num_heads,seq_len,head_dim]
kT = k.reshape(batch_size,seq_len,self.num_heads,self.head_dim).permute(0,2,3,1) # [batch_size,num_heads,head_dim,seq_len]
v = v.reshape(batch_size,seq_len,self.num_heads,self.head_dim).permute(0,2,1,3) # [batch_size,num_heads,seq_len,head_dim]
attention_logits=q@kT/torch.sqrt(torch.tensor(self.embed_dim)) # [batch_size,num_heads,seq_len,seq_len]
if mask is not None:
attention_logits=attention_logits.masked_fill(mask==0, -torch.inf)
attn_weights=F.softmax(attention_logits, dim=-1)
#print(f"attn_weights has shape {attn_weights.shape}")
#print(f"v has shape {v.shape}")
atten_values=attn_weights@v # [batch_size,num_heads,seq_len,head_dim]
return atten_values.permute(0,2,1,3).reshape(batch_size,seq_len,self.embed_dim), attn_weights
class transformer(nn.Module):
def __init__(self, vocab_size, positional_encoding, embed_dim, num_heads, feed_forward_ratio):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.feed_forward_ratio = feed_forward_ratio
self.embed_layer=nn.Linear(embed_dim,3*embed_dim)
self.MultiheadAttention=MultiheadAttention(embed_dim,num_heads)
self.layer_norm=nn.LayerNorm(embed_dim)
self.ffn_layers=nn.Sequential(
nn.Linear(embed_dim,feed_forward_ratio*embed_dim),
nn.ReLU(),
nn.Linear(feed_forward_ratio*embed_dim,embed_dim)
)
self.input_embedding=nn.Embedding(vocab_size, embed_dim)
self.output_embedding=nn.Linear(embed_dim, vocab_size)
self.positional_encoding=positional_encoding(embed_dim)
def forward(self, x): #x has shape [batch_size,seq_len] each element is an integer in range(0,vocab_size)
x=self.input_embedding(x) # [batch_size,seq_len] -> [batch_size,seq_len,embed_dim]
x=self.positional_encoding(x)
#print(f"x has shape {x.shape}")
qkv=self.embed_layer(x) # [batch_size,seq_len,embed_dim] -> [batch_size,seq_len,3*embed_dim]
q, k, v= qkv.chunk(3,dim=-1)
batch_size, seq_len, _=x.shape
mask=torch.tril(torch.ones(seq_len,seq_len), diagonal=0).unsqueeze(0).unsqueeze(0).repeat(batch_size,self.num_heads,1,1).to(device) # [1,1,seq_len,seq_len]
#print(f"mask has shape {mask.shape}")
attn_value, _=self.MultiheadAttention(q,k,v,mask)
#print(f"attn_value has shape {attn_value.shape}")
#print(f"x has shape {x.shape}")
x=x+attn_value
x=self.layer_norm(x)
x= self.ffn_layers(x)
x=self.layer_norm(x)
x=self.output_embedding(x) # [batch_size,seq_len,embed_dim] -> [batch_size,seq_len,vocab_size]
return x # [batch_size,seq_len,vocab_size]
class loss_function(nn.Module):
def __init__(self):
super().__init__()
def forward(self, pred_logits, label):
batch_size, seq_len, embed_dim=pred_logits.shape
return F.cross_entropy(pred_logits.reshape(batch_size*seq_len, embed_dim),label.reshape(batch_size*seq_len))
loss_function=loss_function()
class positional_encoding(nn.Module):
def __init__(self,embed_dim):
super().__init__()
self.embed_dim=embed_dim
def forward(self,x): # x has shape [batch_size, seq_len, seq_len]
batch_size, seq_len, embed_dim=x.shape
pe=torch.arange(0,seq_len).unsqueeze(1) # [seq_len,1]
embed=torch.arange(embed_dim)
embed1=torch.where(embed%2==0,0,1)*torch.sin(pe*(100**(-embed/embed_dim)).unsqueeze(0)) # [seq_len,embed_dim]
embed2=torch.where(embed%2==0,1,0)*torch.sin(pe*(100**(-embed/embed_dim)).unsqueeze(0)) # [seq_len,embed_dim]
pe_embed=(embed1+embed2).unsqueeze(0).repeat(batch_size,1,1).to(device) # [batch_size,seq_len,embed_dim]
return x+pe_embed
# load dataset and tokenizer from Huggingface
dataset_name="tiny_shakespeare"
tokenizer_name="gpt2"
dataset=load_dataset(dataset_name, split="train", trust_remote_code=True)
tokenizer=AutoTokenizer.from_pretrained(tokenizer_name)
if tokenizer.pad_token is None:
tokenizer.pad_token=tokenizer.eos_token
vocab_size=tokenizer.vocab_size
# print(dir(tokenizer)) # all the methods and attributes of the tokenizer
# print(f"max_len for the tokenizer: {tokenizer.model_max_length}")
#sample_data=next(iter(dataset)) # it is a continuous text
#for item in sample_data.keys():
#print(item) # to see the keys - here only key is "text"
class tokenized_text_dataset(data.Dataset):
def __init__(self, dataset,tokenizer, seq_len):
super().__init__()
self.dataset=dataset
self.tokenizer=tokenizer
self.seq_len=seq_len
self.tokenized_dataset=[]
for item in dataset: # all the text is made into a continuous text
self.tokenized_dataset.extend(tokenizer(item["text"], truncation=True, max_length=tokenizer.model_max_length)["input_ids"])
self.size=max(0,len(self.tokenized_dataset)-seq_len-1)
def __len__(self):
return self.size
def __getitem__(self,idx):
input_seq=torch.tensor(self.tokenized_dataset[idx:idx+self.seq_len], dtype=torch.long) # important to make it a tensor explicitly
output_seq=torch.tensor(self.tokenized_dataset[idx+1:idx+self.seq_len+1], dtype=torch.long) # important to make it a tensor explicitly
return input_seq, output_seq
text_dataset=tokenized_text_dataset(dataset,tokenizer,seq_len)
dataloader=data.DataLoader(text_dataset, batch_size=batch_size, shuffle=False)
input_seq, output_seq=next(iter(dataloader)) # (batch_size, seq_len), (batch_size, seq_len)
model=transformer(vocab_size, positional_encoding, embed_dim, num_heads, feed_forward_ratio)
print(model)
optimizer=optim.Adam(model.parameters(),lr=0.1)
scheduler=optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step:min((step+1)/100,1/(step+1)**(1/2)))
class trainer(nn.Module):
def __init__(self, model, optimizer,scheduler, loss_function, dataloader,positional_encoding, embed_dim, vocab_size, num_epochs):
super().__init__()
self.model=model
self.optimizer=optimizer
self.loss_function=loss_function
self.dataloader=dataloader
self.num_epochs=num_epochs
self.positional_encoding=positional_encoding(embed_dim)
self.scheduler=scheduler
self.vocab_size=vocab_size
self.embed_dim=embed_dim
def forward(self):
model=self.model.to(device)
model.train()
for epoch in range(self.num_epochs):
epoch_loss=0
for data, label in dataloader:
data=data.to(device)
label=label.to(device)
self.optimizer.zero_grad()
pred_logits=model(data)
loss=self.loss_function(pred_logits,label)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=10)
self.optimizer.step()
self.scheduler.step()
epoch_loss+=loss.item()
print(f"Epoch: {epoch+1}, Loss: {epoch_loss/len(dataloader)}")
trainer=trainer(model, optimizer,scheduler, loss_function, dataloader,positional_encoding,embed_dim, vocab_size, num_epochs=10)
trainer()