-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer_III.py
287 lines (236 loc) · 13.9 KB
/
transformer_III.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim
from datasets import load_dataset
from transformers import AutoTokenizer
import matplotlib.pyplot as plt
import seaborn as sns
import copy
seq_len=128
embed_dim=16
num_heads=8
feed_forward_ratio=4
batch_size=20
temp=10
lr=1e-1
reference_model_update_every=100
num_epochs=20
device="cuda"
class MultiheadAttention(nn.Module):
def __init__(self, embed_dim,num_heads):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
def forward(self,q,k,v,mask=None): # q,k,v has shape [batch_size,seq_len,embed_dim]
batch_size=q.shape[0]
seq_len = q.shape[1]
q = q.reshape(batch_size,seq_len,self.num_heads,self.head_dim).permute(0,2,1,3) # [batch_size,num_heads,seq_len,head_dim]
kT = k.reshape(batch_size,seq_len,self.num_heads,self.head_dim).permute(0,2,3,1) # [batch_size,num_heads,head_dim,seq_len]
v = v.reshape(batch_size,seq_len,self.num_heads,self.head_dim).permute(0,2,1,3) # [batch_size,num_heads,seq_len,head_dim]
attention_logits=q@kT/torch.sqrt(torch.tensor(self.embed_dim)) # [batch_size,num_heads,seq_len,seq_len]
if mask is not None:
attention_logits=attention_logits.masked_fill(mask==0, -torch.inf)
attn_weights=F.softmax(attention_logits, dim=-1)
#print(f"attn_weights has shape {attn_weights.shape}")
#print(f"v has shape {v.shape}")
atten_values=attn_weights@v # [batch_size,num_heads,seq_len,head_dim]
return atten_values.permute(0,2,1,3).reshape(batch_size,seq_len,self.embed_dim), attn_weights
class positional_encoding(nn.Module):
def __init__(self,embed_dim):
super().__init__()
self.embed_dim=embed_dim
def forward(self,x): # x has shape [batch_size, seq_len, seq_len]
#x=F.one_hot(x,num_classes=self.embed_dim).float()
batch_size, seq_len, embed_dim=x.shape
pe=torch.arange(0,seq_len).unsqueeze(1) # [seq_len,1]
embed=torch.arange(embed_dim)
embed1=torch.where(embed%2==0,0,1)*torch.sin(pe*(100**(-embed/embed_dim)).unsqueeze(0)) # [seq_len,embed_dim]
embed2=torch.where(embed%2==0,1,0)*torch.sin(pe*(100**(-embed/embed_dim)).unsqueeze(0)) # [seq_len,embed_dim]
pe_embed=(embed1+embed2).unsqueeze(0).repeat(batch_size,1,1).to(device) # [batch_size,seq_len,embed_dim]
return x+pe_embed
# load dataset and tokenizer from Huggingface
dataset_name="stanfordnlp/SHP"
tokenizer_name="gpt2"
dataset=load_dataset(dataset_name, split="train", trust_remote_code=True)
dataset=dataset.select(range(min(500,len(dataset)))) # select first 500 samples
tokenizer=AutoTokenizer.from_pretrained(tokenizer_name)
if tokenizer.pad_token is None:
tokenizer.pad_token=tokenizer.eos_token
vocab_size=tokenizer.vocab_size
# print(dir(tokenizer)) # all the methods and attributes of the tokenizer
# print(f"max_len for the tokenizer: {tokenizer.model_max_length}")
sample_data=next(iter(dataset)) # it is a continuous text
for item in sample_data.keys():
print(item) # to see the keys - here only key is "text"
print(f"example history: {sample_data['history']}")
print(f"example human_ref_A: {sample_data['human_ref_A']}")
print(f"example human_ref_B: {sample_data['human_ref_B']}")
print(f"example score_A: {sample_data['score_A']}")
print(f"example score_B: {sample_data['score_B']}")
class tokenized_text_dataset(data.Dataset):
def __init__(self, dataset,tokenizer, seq_len):
super().__init__()
self.dataset=dataset
self.tokenizer=tokenizer
self.seq_len=seq_len
self.tokenized_dataset=[]
for item in dataset:
history=item["history"]
human_ref_A=item["human_ref_A"]
human_ref_B=item["human_ref_B"]
score_A=item["score_A"]
score_B=item["score_B"]
if score_A>score_B:
chosen=human_ref_A
rejected=human_ref_B
else:
chosen=human_ref_B
rejected=human_ref_A
chosen_text=history+chosen
rejected_text=history+rejected
prompt_tokens=self.tokenizer(history,truncation=True, max_length=tokenizer.model_max_length, padding="max_length")["input_ids"]
chosen_tokens=self.tokenizer(chosen_text,truncation=True, max_length=tokenizer.model_max_length, padding="max_length")["input_ids"]
rejected_tokens=self.tokenizer(rejected_text,truncation=True, max_length=tokenizer.model_max_length, padding="max_length")["input_ids"]
self.tokenized_dataset.append({
"prompt":prompt_tokens,
"chosen":chosen_tokens,
"rejected":rejected_tokens
})
self.size=len(self.tokenized_dataset)
def __len__(self):
return self.size
def __getitem__(self,idx):
chosen_tokens=torch.tensor(self.tokenized_dataset[idx]["chosen"][:self.seq_len],dtype=torch.long) # important to make it a tensor explicitly
rejected_tokens=torch.tensor(self.tokenized_dataset[idx]["rejected"][:self.seq_len], dtype=torch.long) # important to make it a tensor explicitly
chosen_label=torch.tensor(self.tokenized_dataset[idx]["chosen"][1:self.seq_len]+[self.tokenizer.pad_token_id],dtype=torch.long) # important to make it a tensor explicitly
rejected_label=torch.tensor(self.tokenized_dataset[idx]["rejected"][1:self.seq_len]+[self.tokenizer.pad_token_id], dtype=torch.long) # important to make it a tensor explicitly
return chosen_tokens, rejected_tokens, chosen_label, rejected_label
text_dataset=tokenized_text_dataset(dataset,tokenizer,seq_len)
dataloader=data.DataLoader(text_dataset, batch_size=batch_size, shuffle=False)
chosen_tokens, rejected_tokens, chosen_label, rejected_label=next(iter(dataloader)) # each has shape (batch_size, seq_len)
# print(f"chosen_tokens has shape {chosen_tokens.shape}")
# print(f"rejected_tokens has shape {rejected_tokens.shape}")
# print(f"chosen_label has shape {chosen_label.shape}")
# print(f"rejected_label has shape {rejected_label.shape}")
class transformer(nn.Module):
def __init__(self, vocab_size, positional_encoding, embed_dim, num_heads, feed_forward_ratio):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.feed_forward_ratio = feed_forward_ratio
self.embed_layer=nn.Linear(embed_dim,3*embed_dim)
self.MultiheadAttention=MultiheadAttention(embed_dim,num_heads)
self.layer_norm=nn.LayerNorm(embed_dim)
self.ffn_layers=nn.Sequential(
nn.Linear(embed_dim,feed_forward_ratio*embed_dim),
nn.ReLU(),
nn.Linear(feed_forward_ratio*embed_dim,embed_dim)
)
self.input_embedding=nn.Embedding(vocab_size, embed_dim)
self.output_embedding=nn.Linear(embed_dim, vocab_size)
self.positional_encoding=positional_encoding(embed_dim)
def forward(self, x): #x has shape [batch_size,seq_len] each element is an integer in range(0,vocab_size)
x=self.input_embedding(x) # [batch_size,seq_len] -> [batch_size,seq_len,embed_dim]
x=self.positional_encoding(x)
#print(f"x has shape {x.shape}")
qkv=self.embed_layer(x) # [batch_size,seq_len,embed_dim] -> [batch_size,seq_len,3*embed_dim]
q, k, v= qkv.chunk(3,dim=-1)
batch_size, seq_len, _=x.shape
mask=torch.tril(torch.ones(seq_len,seq_len), diagonal=0).unsqueeze(0).unsqueeze(0).repeat(batch_size,self.num_heads,1,1).to(device) # [1,1,seq_len,seq_len]
#print(f"mask has shape {mask.shape}")
attn_value, _=self.MultiheadAttention(q,k,v,mask)
#print(f"attn_value has shape {attn_value.shape}")
#print(f"x has shape {x.shape}")
x=x+attn_value
x=self.layer_norm(x)
x= self.ffn_layers(x)
x=self.layer_norm(x)
x=self.output_embedding(x) # [batch_size,seq_len,embed_dim] -> [batch_size,seq_len,vocab_size]
return x # [batch_size,seq_len,vocab_size]
policy_model=transformer(vocab_size, positional_encoding, embed_dim, num_heads, feed_forward_ratio)
reference_model=transformer(vocab_size, positional_encoding, embed_dim, num_heads, feed_forward_ratio)
optimizer=optim.Adam(policy_model.parameters(),lr=lr)
#scheduler=optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step:min((step+1)/100,1/(step+1)**(1/2)))
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=1000, eta_min=1e-6)
class loss_function(nn.Module): # DPO training
def __init__(self, temp):
super().__init__()
self.temp=temp
def forward(self, policy_chosen_logprob, policy_rejected_logprob, reference_chosen_logprob, reference_rejected_logprob): # each one has shape [batch_size]
#print(f"-policy_chosen_logprob: {-(policy_chosen_logprob).mean()}")
#print(f"-reference_chosen_logprob: {-(reference_chosen_logprob).mean()}")
#print(f"-policy_rejected_logprob: {-(policy_rejected_logprob).mean()}")
#print(f"-reference_rejected_logprob: {-(reference_rejected_logprob).mean()}")
#return -(policy_chosen_logprob-policy_rejected_logprob).mean()
#return -(policy_chosen_logprob).mean()
#return (policy_rejected_logprob).mean()
return -F.logsigmoid(self.temp*((policy_chosen_logprob-reference_chosen_logprob)-(policy_rejected_logprob-reference_rejected_logprob))).mean()
#return -(self.temp*((policy_chosen_logprob-reference_chosen_logprob)-(policy_rejected_logprob-reference_rejected_logprob))).mean()
class calculate_logprob(nn.Module):
def __init__(self):
super().__init__()
def forward(self, logits, labels, pad_token_id): # logits has shape [batch_size,seq_len,vocab_size], labels has shape [batch_size,seq_len]
#batch_size, seq_len, vocab_size=logits.shape
log_prob=F.log_softmax(logits, dim=-1) # [batch_size,seq_len,vocab_size]
required_log_prob=torch.gather(log_prob,-1,labels.unsqueeze(-1)).squeeze(-1) # [batch_size,seq_len,vocab_size] -> [batch_size,seq_len]
mask=(labels!=pad_token_id).float() # [batch_size,seq_len]
log_prob=required_log_prob*mask # [batch_size,seq_len]
return log_prob.sum(dim=-1)/mask.sum(dim=-1).clamp(min=1.0) # [batch_size]
calculate_logprob=calculate_logprob()
loss_function=loss_function(temp)
class trainer(nn.Module):
def __init__(self, policy_model, reference_model , optimizer,scheduler, loss_function, dataloader,positional_encoding, tokenizer, embed_dim, vocab_size, num_epochs, reference_model_update_every):
super().__init__()
self.policy_model=policy_model
self.reference_model=reference_model
with torch.no_grad():
for param in self.policy_model.parameters():
noise = torch.randn_like(param) * 0.1 # Small noise
param.add_(noise)
self.optimizer=optimizer
self.loss_function=loss_function
self.dataloader=dataloader
self.num_epochs=num_epochs
self.positional_encoding=positional_encoding(embed_dim)
self.scheduler=scheduler
self.vocab_size=vocab_size
self.embed_dim=embed_dim
self.tokenizer=tokenizer
self.reference_model_update_every=reference_model_update_every
def forward(self):
self.policy_model=self.policy_model.to(device)
self.policy_model.train()
self.reference_model=self.reference_model.to(device)
self.reference_model.eval()
for epoch in range(self.num_epochs):
epoch_loss=0
for chosen_tokens, rejected_tokens, chosen_label, rejected_label in self.dataloader:
self.optimizer.zero_grad()
chosen_tokens=chosen_tokens.to(device) # [batch_size,seq_len]
rejected_tokens=rejected_tokens.to(device) # [batch_size,seq_len]
chosen_label=chosen_label.to(device) # [batch_size,seq_len]
rejected_label=rejected_label.to(device) # [batch_size,seq_len]
policy_chosen_logits=self.policy_model(chosen_tokens) # [batch_size,seq_len,vocab_size]
policy_rejected_logits=self.policy_model(rejected_tokens) # [batch_size,seq_len,vocab_size]
with torch.no_grad():
reference_chosen_logits=self.reference_model(chosen_tokens) # [batch_size,seq_len,vocab_size]
reference_rejected_logits=self.reference_model(rejected_tokens) # [batch_size,seq_len,vocab_size]
policy_chosen_logprob=calculate_logprob(policy_chosen_logits, chosen_label, self.tokenizer.pad_token_id)
policy_rejected_logprob=calculate_logprob(policy_rejected_logits, rejected_label, self.tokenizer.pad_token_id)
reference_chosen_logprob=calculate_logprob(reference_chosen_logits, chosen_label, self.tokenizer.pad_token_id)
reference_rejected_logprob=calculate_logprob(reference_rejected_logits, rejected_label, self.tokenizer.pad_token_id)
loss=self.loss_function(policy_chosen_logprob, policy_rejected_logprob, reference_chosen_logprob, reference_rejected_logprob)
loss.backward()
nn.utils.clip_grad_norm_(self.policy_model.parameters(), max_norm=10)
self.optimizer.step()
epoch_loss+=loss.item()
self.scheduler.step()
if epoch%self.reference_model_update_every==0: # update reference model with policy model
self.reference_model.load_state_dict(self.policy_model.state_dict())
print(f"Epoch: {epoch+1}, train loss: {epoch_loss/len(dataloader)}")
trainer=trainer(policy_model,reference_model, optimizer,scheduler, loss_function, dataloader,positional_encoding,tokenizer, embed_dim, vocab_size, num_epochs,reference_model_update_every)
trainer()