Skip to content

Commit 5ef4d1b

Browse files
bdwyer2xuhdev
andauthored
switch to quay.io (#146)
* switch to quay.io * Update README.md Co-authored-by: Hong Xu <[email protected]> Co-authored-by: Hong Xu <[email protected]>
1 parent 2b0d07f commit 5ef4d1b

File tree

5 files changed

+20
-13
lines changed

5 files changed

+20
-13
lines changed

.travis.yml

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -37,8 +37,8 @@ before_install:
3737
- '[[ -z "$VERSION" ]] && export VERSION=jenkins || /bin/true'
3838

3939
install:
40-
- docker build --build-arg model=$MODEL -f "$DOCKERFILE" -t codait/max-object-detector:"$IMAGE"-"$ARCH"-"$VERSION"-"$MODEL" .
41-
- docker run -it -d --rm -p 5000:5000 codait/max-object-detector:"$IMAGE"-"$ARCH"-"$VERSION"-"$MODEL"
40+
- docker build --build-arg model=$MODEL -f "$DOCKERFILE" -t quay.io/codait/max-object-detector:"$IMAGE"-"$ARCH"-"$VERSION"-"$MODEL" .
41+
- docker run -it -d --rm -p 5000:5000 quay.io/codait/max-object-detector:"$IMAGE"-"$ARCH"-"$VERSION"-"$MODEL"
4242
- pip install -r requirements-test.txt
4343

4444
before_script:
@@ -51,8 +51,8 @@ script:
5151

5252
after_success:
5353
- if [[ "$IMAGE" != "test" && "$TRAVIS_PULL_REQUEST" == "false" ]] && [[ "$TRAVIS_BRANCH" == "master" || "$TRAVIS_BRANCH" == "$TRAVIS_TAG" ]]; then
54-
echo "$DOCKER_PASS" | docker login -u "$DOCKER_USER" --password-stdin;
55-
docker push codait/max-object-detector:"$IMAGE"-"$ARCH"-"$VERSION"-"$MODEL";
54+
echo "$DOCKER_PASS_QUAY" | docker login -u "$DOCKER_USER_QUAY" --password-stdin quay.io;
55+
docker push quay.io/codait/max-object-detector:"$IMAGE"-"$ARCH"-"$VERSION"-"$MODEL";
5656
fi
5757

5858
matrix:

Dockerfile

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
# limitations under the License.
1515
#
1616

17-
FROM codait/max-base:v1.3.2
17+
FROM quay.io/codait/max-base:v1.3.2
1818

1919
RUN apt-get update && apt-get -y install libatlas3-base && rm -rf /var/lib/apt/lists/*
2020

Dockerfile.arm32v7

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
# limitations under the License.
1515
#
1616

17-
FROM codait/max-base:arm-arm32v7-v1.3.2
17+
FROM quay.io/codait/max-base:arm-arm32v7-v1.3.3
1818

1919
RUN apt-get update && apt-get -y install libatlas3-base && rm -rf /var/lib/apt/lists/*
2020

README.md

Lines changed: 13 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,11 @@
44

55
# IBM Developer Model Asset Exchange: Object Detector
66

7-
This repository contains code to instantiate and deploy an object detection model. This model recognizes the objects present in an image from the 80 different high-level classes of objects in the [COCO Dataset](http://mscoco.org/). The model consists of a deep convolutional net base model for image feature extraction, together with additional convolutional layers specialized for the task of object detection, that was trained on the COCO data set. The input to the model is an image, and the output is a list of estimated class probabilities for the objects detected in the image.
7+
This repository contains code to instantiate and deploy an object detection model. This model recognizes the objects
8+
present in an image from the 80 different high-level classes of objects in the [COCO Dataset](http://mscoco.org/). The
9+
model consists of a deep convolutional net base model for image feature extraction, together with additional
10+
convolutional layers specialized for the task of object detection, that was trained on the COCO data set. The input to
11+
the model is an image, and the output is a list of estimated class probabilities for the objects detected in the image.
812

913
The model is based on the [SSD Mobilenet V1 and Faster RCNN ResNet101 object detection model for TensorFlow](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md). The model files are hosted on IBM Cloud Object Storage: [ssd_mobilenet_v1.tar.gz](https://max-cdn.cdn.appdomain.cloud/max-object-detector/1.0.2/ssd_mobilenet_v1.tar.gz) and [faster_rcnn_resnet101.tar.gz](https://max-cdn.cdn.appdomain.cloud/max-object-detector/1.0.2/faster_rcnn_resnet101.tar.gz). The code in this repository deploys the model as a web service in a Docker container. This repository was developed as part of the [IBM Developer Model Asset Exchange](https://developer.ibm.com/exchanges/models/) and the public API is powered by [IBM Cloud](https://ibm.biz/Bdz2XM).
1014

@@ -50,20 +54,22 @@ To run the docker image, which automatically starts the model serving API, run:
5054

5155
Intel CPUs:
5256
```bash
53-
$ docker run -it -p 5000:5000 codait/max-object-detector
57+
$ docker run -it -p 5000:5000 quay.io/codait/max-object-detector
5458
```
5559

5660
ARM CPUs (eg Raspberry Pi):
5761
```bash
58-
$ docker run -it -p 5000:5000 codait/max-object-detector:arm-arm32v7-latest
62+
$ docker run -it -p 5000:5000 quay.io/codait/max-object-detector:arm-arm32v7-latest
5963
```
6064

6165
This will pull a pre-built image from Docker Hub (or use an existing image if already cached locally) and run it.
6266
If you'd rather checkout and build the model locally you can follow the [run locally](#run-locally) steps below.
6367

6468
## Deploy on Red Hat OpenShift
6569

66-
You can deploy the model-serving microservice on Red Hat OpenShift by following the instructions for the OpenShift web console or the OpenShift Container Platform CLI [in this tutorial](https://developer.ibm.com/tutorials/deploy-a-model-asset-exchange-microservice-on-red-hat-openshift/), specifying `codait/max-object-detector` as the image name.
70+
You can deploy the model-serving microservice on Red Hat OpenShift by following the instructions for the OpenShift web
71+
console or the OpenShift Container Platform CLI in [this tutorial](https://developer.ibm.com/tutorials/deploy-a-model-asset-exchange-microservice-on-red-hat-openshift/),
72+
specifying `quay.io/codait/max-object-detector` as the image name.
6773

6874
## Deploy on Kubernetes
6975

@@ -77,7 +83,8 @@ $ kubectl apply -f https://raw.githubusercontent.com/IBM/MAX-Object-Detector/mas
7783

7884
The model will be available internally at port `5000`, but can also be accessed externally through the `NodePort`.
7985

80-
A more elaborate tutorial on how to deploy this MAX model to production on [IBM Cloud](https://ibm.biz/Bdz2XM) can be found [here](http://ibm.biz/max-to-ibm-cloud-tutorial).
86+
A more elaborate tutorial on how to deploy this MAX model to production on [IBM Cloud](https://ibm.biz/Bdz2XM) can be
87+
found [here](http://ibm.biz/max-to-ibm-cloud-tutorial).
8188

8289
## Run Locally
8390

@@ -222,7 +229,7 @@ and provides interactive visualization of the bounding boxes and their related l
222229
If you wish to disable the web app, start the model serving API by running:
223230

224231
```bash
225-
$ docker run -it -p 5000:5000 -e DISABLE_WEB_APP=true codait/max-object-detector
232+
$ docker run -it -p 5000:5000 -e DISABLE_WEB_APP=true quay.io/codait/max-object-detector
226233
```
227234

228235
## Train this Model on Watson Machine Learning

max-object-detector.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ spec:
2727
spec:
2828
containers:
2929
- name: max-object-detector
30-
image: codait/max-object-detector:latest
30+
image: quay.io/codait/max-object-detector:latest
3131
ports:
3232
- containerPort: 5000
3333
env:

0 commit comments

Comments
 (0)