-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfinetune.py
333 lines (296 loc) · 10.8 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# This script is based on the following source:
# https://github.com/tloen/alpaca-lora
import os
import sys
import argparse
import csv
import json
import logging
import torch
import transformers
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
set_seed,
Trainer,
DataCollatorForSeq2Seq,
TrainingArguments,
)
from peft import LoraConfig, get_peft_model, PeftModel
from lm_eval import evaluator
from lm_eval.models.huggingface import HFLM
from datasets import load_dataset
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
if project_root not in sys.path:
sys.path.insert(0, project_root)
import utils
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
default="meta-llama/Llama-2-7b-hf",
help="Path to the pre-trained model."
)
parser.add_argument(
"--dataset_name",
type=str,
default="alpaca",
help="Dataset to finetune.",
choices=["alpaca"]
)
parser.add_argument(
"--do_train",
action="store_true",
help="Flag to indicate whether to perform training."
)
parser.add_argument(
"--lora",
action="store_true",
)
parser.add_argument(
"--lora_r",
type=int,
default=8,
)
parser.add_argument(
"--lora_alpha",
type=int,
default=16,
)
parser.add_argument(
"--lora_target_modules",
type=str,
default="q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj",
)
parser.add_argument(
"--do_eval",
action="store_true",
help="Flag to indicate whether to perform evaluation."
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=8,
)
parser.add_argument(
"--num_train_epochs",
type=int,
default=2,
)
parser.add_argument(
"--max_steps",
type=int,
default=-1,
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
)
parser.add_argument(
"--output_path",
type=str,
default="finetuned_model",
help="Directory to save the fine-tuned models and evaluation results."
)
args = parser.parse_args()
model_path = args.model_path
do_train = args.do_train
lora = args.lora
lora_r = args.lora_r
lora_alpha = args.lora_alpha
lora_target_modules = args.lora_target_modules
do_eval = args.do_eval
dataset_name = args.dataset_name
batch_size = args.batch_size
gradient_accumulation_steps = args.gradient_accumulation_steps
num_train_epochs = args.num_train_epochs
max_steps = args.max_steps
learning_rate = args.learning_rate
output_path = args.output_path
# Create output directory if it doesn't exist
os.makedirs(output_path, exist_ok=True)
set_seed(42)
transformers.utils.logging.set_verbosity_info()
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map={"": 0},
trust_remote_code=True,
torch_dtype="float16",
)
total_params = sum(p.numel() for p in model.parameters())
if do_train and lora:
for name, param in model.named_parameters():
param.requires_grad = False
lora_config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
lora_dropout=0.05,
target_modules=lora_target_modules.split(","),
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
for name, param in model.named_parameters():
if param.requires_grad:
param.data = param.data.to(torch.float32)
elif do_eval and lora:
model = PeftModel.from_pretrained(model, output_path, device_map={"": 0})
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if do_train:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
alpaca_template = {
"description": "Template used by Alpaca-LoRA.",
"prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
"prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n",
"response_split": "### Response:"
}
def generate_prompt(
instruction: str,
input = None,
label = None,
) -> str:
# returns the full prompt from instruction and optional input
# if a label (=response, =output) is provided, it's also appended.
if input:
res = alpaca_template["prompt_input"].format(
instruction=instruction, input=input
)
else:
res = alpaca_template["prompt_no_input"].format(
instruction=instruction
)
if label:
res = f"{res}{label}"
return res
# Load data
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=256,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < 256
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
tokenized_full_prompt = tokenize(full_prompt)
user_prompt = generate_prompt(data_point["instruction"], data_point["input"])
tokenized_user_prompt = tokenize(
user_prompt, add_eos_token=False
)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
tokenized_full_prompt["labels"] = [-100] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:] # could be sped up, probably
return tokenized_full_prompt
data = load_dataset("yahma/alpaca-cleaned")
train_val = data["train"].train_test_split(
test_size=2000, shuffle=True, seed=42
)
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=TrainingArguments(
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
num_train_epochs=num_train_epochs,
max_steps=max_steps,
learning_rate=learning_rate,
warmup_steps=100,
optim="adamw_torch",
fp16=True,
output_dir=output_path,
logging_steps=10,
save_strategy="steps",
save_steps=100,
eval_strategy="steps",
eval_steps=100,
save_total_limit=2,
load_best_model_at_end=True,
),
train_dataset=train_data,
eval_dataset=val_data,
data_collator=DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
)
)
model.config.use_cache = False
train_result = trainer.train()
metrics = train_result.metrics
metrics["train_samples"] = len(train_data)
trainer.save_model()
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluate on selected tasks
if do_eval:
model.eval()
# Evaluate on wikitext2 dataset
dataset = utils.get_dataset("wikitext2")
test_dataset = dataset["test"]
test_loader = utils.prepare_test_dataloader(
dataset=test_dataset,
tokenizer=tokenizer,
seqlen=2048,
batch_size=1
)
dataset_ppl = utils.evaluate_ppl(
model=model,
dataloader=test_loader,
pad_token_id=model.config.eos_token_id,
)
dataset_ppl = round(dataset_ppl, 2)
logging.info(f'wikitext2 PPL: {dataset_ppl}')
# Evaluate on selected tasks
hflm = HFLM(pretrained=model, tokenizer=tokenizer, batch_size=batch_size)
task_names = ["piqa", "winogrande", "hellaswag", "arc_easy", "arc_challenge"]
logging.info(f"Selected Tasks: {task_names}")
results = evaluator.simple_evaluate(hflm, tasks=task_names, num_fewshot=0, batch_size=batch_size, log_samples=False)['results']
metric_vals = {task: round(result.get('acc_norm,none', result['acc,none']), 4) * 100 for task, result in results.items()}
logging.info(json.dumps(metric_vals, indent=4))
def calculate_avg_accuracy(task_names, results):
n_tasks = len(task_names)
acc_cumul = sum(result.get('acc_norm,none', result['acc,none']) for task, result in results.items())
return round(acc_cumul / n_tasks, 4) * 100
acc_avg = calculate_avg_accuracy(task_names, results)
logging.info(f"Average accuracy across tasks: {acc_avg}")
# Save evaluation results
overall_results = {
"ppl_wikitext2": dataset_ppl,
"5cs_acc_avg": acc_avg,
**metric_vals
}
eval_result_path = os.path.join(output_path, f"eval.res.json")
with open(eval_result_path, "w") as f:
json.dump(overall_results, f, indent=4)
eval_result_csv_path = os.path.join(output_path, f"eval.res.csv")
columns = ["total_params", "pruned_params", "ratio", "ppl_wikitext2"] + task_names + ["5cs_acc_avg"]
with open(eval_result_csv_path, "w", newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=columns)
writer.writeheader()
writer.writerow(overall_results)
if __name__ == "__main__":
main()