1
- import clusterdetect
1
+ from . import clusterdetect
2
2
import matplotlib .pyplot as plt
3
3
import numpy
4
4
from numpy import log10 , log , exp
@@ -21,12 +21,13 @@ def test_clusterdetect():
21
21
fout = open ('x_1d_clustergraph.dot' , 'w' )
22
22
fout .write ("digraph g{\n " )
23
23
for i , (a , b , dist , entries ) in enumerate (cluster ):
24
- #print '%3d%s %3d%s %.2f %3d' % (a,
25
- # '*' if a < n else ' ', b, '*' if b < n else ' ', dist, entries)
24
+ a , b = int (a ), int (b )
25
+ #print('%3d%s %3d%s %.2f %3d' % (a,
26
+ # '*' if a < n else ' ', b, '*' if b < n else ' ', dist, entries))
26
27
if a < n :
27
- fout .write ("%d[label=%.3f,shape=square];\n " % (a , u [a ]))
28
+ fout .write ("%d[label=%.3f,shape=square];\n " % (a , u [a , 0 ]))
28
29
if b < n :
29
- fout .write ("%d[label=%.3f,shape=square];\n " % (b , u [b ]))
30
+ fout .write ("%d[label=%.3f,shape=square];\n " % (b , u [b , 0 ]))
30
31
fout .write ("%d -> %d [label=%.2f];\n " % (i + n , a , dist ))
31
32
fout .write ("%d -> %d [label=%.2f];\n " % (i + n , b , dist ))
32
33
tree [i + n ] = (a , b , dist , entries )
0 commit comments