Open
Description
Describe the bug
Sometimes when using a CuArray, I'm having some weird behaviors when using some Flux normalizations.
Trying to find the problem, I saw that this happens (at least) when using Statistics mean function.
If I execute it on the CPU it always give the expected values, but on GPU sometimes it gives this strange behavior.
To reproduce
The Minimal Working Example (MWE) for this bug:
julia> using CUDA, Statistics
julia> a = CUDA.ones((640, 640, 32, 1))
julia> b = mean(a; dims=[1])
1×640×32×1 CuArray{Float32, 4, CUDA.Mem.DeviceBuffer}:
[:, :, 1, 1] =
0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 … 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994
[:, :, 2, 1] =
0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 … 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994
[:, :, 3, 1] =
0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 … 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994
;;; …
[:, :, 30, 1] =
0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 … 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994
[:, :, 31, 1] =
0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 … 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994
[:, :, 32, 1] =
0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 … 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994 0.999994
julia> b = mean(a |> cpu; dims=[1])
1×640×32×1 Array{Float32, 4}:
[:, :, 1, 1] =
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
[:, :, 2, 1] =
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
[:, :, 3, 1] =
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
;;; …
[:, :, 30, 1] =
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
[:, :, 31, 1] =
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
[:, :, 32, 1] =
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Manifest.toml
[[deps.CUDA]]
deps = ["AbstractFFTs", "Adapt", "BFloat16s", "CEnum", "CUDA_Driver_jll", "CUDA_Runtime_Discovery", "CUDA_Runtime_jll", "CompilerSupportLibraries_jll", "ExprTools", "GPUArrays", "GPUCompiler", "LLVM", "LazyArtifacts", "Libdl", "LinearAlgebra", "Logging", "Preferences", "Printf", "Random", "Random123", "RandomNumbers", "Reexport", "Requires", "SparseArrays", "SpecialFunctions"]
git-tree-sha1 = "edff14c60784c8f7191a62a23b15a421185bc8a8"
uuid = "052768ef-5323-5732-b1bb-66c8b64840ba"
version = "4.0.1"
[[deps.CUDA_Driver_jll]]
deps = ["Artifacts", "JLLWrappers", "LazyArtifacts", "Libdl", "Pkg"]
git-tree-sha1 = "75d7896d1ec079ef10d3aee8f3668c11354c03a1"
uuid = "4ee394cb-3365-5eb0-8335-949819d2adfc"
version = "0.2.0+0"
[[deps.CUDA_Runtime_Discovery]]
deps = ["Libdl"]
git-tree-sha1 = "58dd8ec29f54f08c04b052d2c2fa6760b4f4b3a4"
uuid = "1af6417a-86b4-443c-805f-a4643ffb695f"
version = "0.1.1"
[[deps.CUDA_Runtime_jll]]
deps = ["Artifacts", "CUDA_Driver_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "Pkg", "TOML"]
git-tree-sha1 = "d3e6ccd30f84936c1a3a53d622d85d7d3f9b9486"
uuid = "76a88914-d11a-5bdc-97e0-2f5a05c973a2"
version = "0.2.3+2"
[[deps.CUDNN_jll]]
deps = ["Artifacts", "CUDA_Runtime_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "Pkg", "TOML"]
git-tree-sha1 = "57011df4fce448828165e566af9befa2ea94350a"
uuid = "62b44479-cb7b-5706-934f-f13b2eb2e645"
version = "8.6.0+3"
[[deps.AbstractFFTs]]
deps = ["ChainRulesCore", "LinearAlgebra"]
git-tree-sha1 = "69f7020bd72f069c219b5e8c236c1fa90d2cb409"
uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c"
version = "1.2.1"
[[deps.Adapt]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "0310e08cb19f5da31d08341c6120c047598f5b9c"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "3.5.0"
[[deps.BFloat16s]]
deps = ["LinearAlgebra", "Printf", "Random", "Test"]
git-tree-sha1 = "dbf84058d0a8cbbadee18d25cf606934b22d7c66"
uuid = "ab4f0b2a-ad5b-11e8-123f-65d77653426b"
version = "0.4.2"
[[deps.CEnum]]
git-tree-sha1 = "eb4cb44a499229b3b8426dcfb5dd85333951ff90"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.4.2"
[[deps.GPUArrays]]
deps = ["Adapt", "GPUArraysCore", "LLVM", "LinearAlgebra", "Printf", "Random", "Reexport", "Serialization", "Statistics"]
git-tree-sha1 = "4dfaff044eb2ce11a897fecd85538310e60b91e6"
uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
version = "8.6.2"
[[deps.GPUArraysCore]]
deps = ["Adapt"]
git-tree-sha1 = "57f7cde02d7a53c9d1d28443b9f11ac5fbe7ebc9"
uuid = "46192b85-c4d5-4398-a991-12ede77f4527"
version = "0.1.3"
[[deps.GPUCompiler]]
deps = ["ExprTools", "InteractiveUtils", "LLVM", "Libdl", "Logging", "TimerOutputs", "UUIDs"]
git-tree-sha1 = "95185985a5d2388c6d0fedb06181ad4ddd40e0cb"
uuid = "61eb1bfa-7361-4325-ad38-22787b887f55"
version = "0.17.2"
[[deps.LLVM]]
deps = ["CEnum", "LLVMExtra_jll", "Libdl", "Printf", "Unicode"]
git-tree-sha1 = "df115c31f5c163697eede495918d8e85045c8f04"
uuid = "929cbde3-209d-540e-8aea-75f648917ca0"
version = "4.16.0"
Version info
Details on Julia:
Julia 1.8.2
julia> versioninfo()
Julia Version 1.8.2
Commit 36034abf26 (2022-09-29 15:21 UTC)
Platform Info:
OS: Windows (x86_64-w64-mingw32)
CPU: 16 × AMD Ryzen 7 4800H with Radeon Graphics
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, znver2)
Threads: 4 on 16 virtual cores
Environment:
JULIA_EDITOR = code
JULIA_NUM_THREADS = 4
Details on CUDA:
julia> CUDA.versioninfo()
CUDA runtime 11.8, artifact installation
CUDA driver 12.0
NVIDIA driver 527.56.0
Libraries:
- CUBLAS: 11.11.3
- CURAND: 10.3.0
- CUFFT: 10.9.0
- CUSOLVER: 11.4.1
- CUSPARSE: 11.7.5
- CUPTI: 18.0.0
- NVML: 12.0.0+527.56
Toolchain:
- Julia: 1.8.2
- LLVM: 13.0.1
- PTX ISA support: 3.2, 4.0, 4.1, 4.2, 4.3, 5.0, 6.0, 6.1, 6.3, 6.4, 6.5, 7.0, 7.1, 7.2
- Device capability support: sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61, sm_62, sm_70, sm_72, sm_75, sm_80, sm_86
1 device:
0: NVIDIA GeForce GTX 1650 Ti (sm_75, 2.901 GiB / 4.000 GiB available)