@@ -339,9 +339,6 @@ mul!(C::StridedMatrix{T}, A::StridedMatrix{T}, B::Hermitian{T,<:StridedMatrix})
339
339
* (adjA:: Adjoint{<:Any,<:RealHermSymComplexSym} , adjB:: Adjoint{<:Any,<:RealHermSymComplexHerm} ) = adjA * adjB. parent
340
340
* (adjA:: Adjoint{<:Any,<:RealHermSymComplexHerm} , adjB:: Adjoint{<:Any,<:RealHermSymComplexSym} ) = adjA. parent * adjB
341
341
342
- # ambiguities with RowVector
343
- * (A:: RowVector , transB:: Transpose{<:Any,<:RealHermSymComplexSym} ) = A * transB. parent
344
- * (A:: RowVector , adjB:: Adjoint{<:Any,<:RealHermSymComplexHerm} ) = A * adjB. parent
345
342
# ambiguities with AbstractTriangular
346
343
* (transA:: Transpose{<:Any,<:RealHermSymComplexSym} , B:: AbstractTriangular ) = transA. parent * B
347
344
* (A:: AbstractTriangular , transB:: Transpose{<:Any,<:RealHermSymComplexSym} ) = A * transB. parent
@@ -372,8 +369,6 @@ det(A::Symmetric) = det(factorize(A))
372
369
# Bunch-Kaufman solves can not utilize BLAS-3 for multiple right hand sides
373
370
# so using LU is faster for AbstractMatrix right hand side
374
371
\ (A:: HermOrSym{<:Any,<:StridedMatrix} , B:: AbstractMatrix ) = \ (lufact (A), B)
375
- # ambiguity with RowVector
376
- \ (A:: HermOrSym{<:Any,<:StridedMatrix} , B:: RowVector ) = invoke (\ , Tuple{AbstractMatrix, RowVector}, A, B)
377
372
378
373
function _inv (A:: HermOrSym )
379
374
n = checksquare (A)
759
754
* (A:: Transpose{<:Any,<:RealHermSymComplexSym} , B:: Adjoint{<:Any,<:AbstractMatrix} ) = A. parent * B
760
755
* (A:: Transpose{<:Any,<:RealHermSymComplexSym} , B:: Transpose{<:Any,<:AbstractVector} ) = A. parent * B
761
756
* (A:: Transpose{<:Any,<:RealHermSymComplexSym} , B:: Transpose{<:Any,<:AbstractMatrix} ) = A. parent * B
762
- # dismabiguation methods: *(Adj/Trans of RealHermSymComplex{Herm|Sym}, Adj/Trans of RowVector)
763
- * (A:: Adjoint{<:Any,<:RealHermSymComplexHerm} , B:: Adjoint{<:Any,<:RowVector} ) = A. parent * B
764
- * (A:: Adjoint{<:Any,<:RealHermSymComplexHerm} , B:: Transpose{<:Any,<:RowVector} ) = A. parent * B
765
- * (A:: Transpose{<:Any,<:RealHermSymComplexSym} , B:: Adjoint{<:Any,<:RowVector} ) = A. parent * B
766
- * (A:: Transpose{<:Any,<:RealHermSymComplexSym} , B:: Transpose{<:Any,<:RowVector} ) = A. parent * B
767
757
768
758
# dismabiguation methods: *(Adj/Trans of AbsTri or RealHermSymComplex{Herm|Sym}, Adj/Trans of other)
769
759
* (A:: Adjoint{<:Any,<:AbstractTriangular} , B:: Adjoint{<:Any,<:RealHermSymComplexHerm} ) = A * B. parent
0 commit comments