Skip to content

Commit 24ea004

Browse files
authored
Merge pull request #150 from JuliaOpt/release-0.4
Release 0.4
2 parents f68b9da + 1977e33 commit 24ea004

36 files changed

+2182
-2414
lines changed

.travis.yml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,7 @@ os:
33
- linux
44
julia:
55
- 0.5
6+
- 0.6
67
notifications:
78
email: false
89

README.md

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
**WARNING:** *This package is currently in development. Any help or feedback is appreciated.*
55

66

7-
**Latest release:** 0.3.0
7+
**Latest release:** 0.4.0
88

99
| **Documentation** | **Build Status** | **Social** |
1010
|:-----------------:|:----------------:|:----------:|
@@ -28,13 +28,13 @@ It is built upon [JuMP]
2828
- Linear dynamics
2929
- Linear or convex piecewise linear cost
3030

31-
Extension to non-linear formulation are under development.
31+
Extension to non-linear formulation are under development.
3232
Extension to more complex alea dependance are under developpment.
3333

3434
## Why Extensive formulation ?
3535

3636
An extensive formulation approach consists in representing the stochastic problem as a deterministic
37-
one with more variable and call a standard deterministic solver. Mainly usable in a linear
37+
one with more variable and call a standard deterministic solver. Mainly usable in a linear
3838
setting. Computational complexity is exponential in the number of stages.
3939

4040
## Why Stochastic Dynamic Programming ?
@@ -54,7 +54,10 @@ control strategies.
5454

5555

5656
## Installation
57-
Installing StochDynamicProgramming is an easy process. Open Julia and enter
57+
Installing StochDynamicProgramming is an easy process.
58+
Currently, the package depends upon `StochasticDualDynamicProgramming.jl`, which is not
59+
yet registered in Julia's METADATA. To install the package,
60+
open Julia and enter
5861

5962
```julia
6063
julia> Pkg.update()

REQUIRE

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
julia 0.5
2-
JuMP 0.16
2+
JuMP 0.17
33
Distributions
44
ProgressMeter
55
Interpolations
6-
Iterators
6+
CutPruners 0.0.2
7+
Compat 0.18

TODO.md

Lines changed: 0 additions & 21 deletions
This file was deleted.

doc/sddp_api.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,8 @@ but allows to use either piecewise linear or quadratic costs.
2020
To define a `LinearSPModel`, the constructor is::
2121

2222
spmodel = LinearSPModel(
23-
nstage, # number of stages
24-
ubounds, # bounds of control
23+
n_stage, # number of stages
24+
u_bounds, # bounds of control
2525
x0, # initial state
2626
cost, # cost function
2727
dynamic, # dynamic
@@ -36,8 +36,8 @@ Default parameters
3636
^^^^^^^^^^^^^^^^^^
3737
You should at least specify these parameters to define a `LinearSPModel`:
3838

39-
- `nstage` (Int): number of stages in the stochastic multistage problem
40-
- `ubounds` (list of tuple): bounds upon control, defined as a sequence of tuple :code:`(umin, umax)`.
39+
- `n_stage` (Int): number of stages in the stochastic multistage problem
40+
- `u_bounds` (list of tuple): bounds upon control, defined as a sequence of tuple :code:`(umin, umax)`.
4141
- `x0` (`Vec{Float64}`): initial state
4242
- `cost` (`Function`): cost function as a function of time, state, control and noise returning a Float
4343
- `dynamic` (`Function`): system's dynamic as a function of time, state, control and noise returning a vector

examples/battery_storage_parallel.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -106,10 +106,10 @@ println("library loaded")
106106
controlSteps, infoStruct)
107107
end
108108

109-
Vs = StochDynamicProgramming.solve_DP(spmodel,paramSDP, 1)
109+
Vs = StochDynamicProgramming.solve_dp(spmodel,paramSDP, 1)
110110

111111
lb_sdp = StochDynamicProgramming.get_bellman_value(spmodel,paramSDP,Vs)
112112
println("Value obtained by SDP: "*string(lb_sdp))
113-
costsdp, states, stocks = StochDynamicProgramming.sdp_forward_simulation(spmodel,paramSDP,scenarios,Vs)
113+
costsdp, states, stocks = StochDynamicProgramming.forward_simulations(spmodel,paramSDP,Vs,scenarios)
114114
println(mean(costsdp))
115115

0 commit comments

Comments
 (0)