-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathDriverAnaylsis.py
302 lines (237 loc) · 8.88 KB
/
DriverAnaylsis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 20 21:14:31 2017
@author: Tin
"""
# Libraries
import pandas as pd
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib as mpl
import seaborn as sns
import missingno as msno
from sklearn.ensemble import RandomForestClassifier
from sklearn import datasets
from sklearn import metrics
from sklearn.ensemble import ExtraTreesClassifier
from xgboost import XGBClassifier
import warnings
from collections import Counter
warnings.filterwarnings('ignore')
train_set = pd.read_csv('C:/Users/Tin Hang/Desktop/TestPythonCodes/DriverPrediction/train.csv')
test_set = pd.read_csv('C:/Users/Tin Hang/Desktop/TestPythonCodes/DriverPrediction/test.csv')
Sample_set = pd.read_csv("C:/Users/Tin Hang/Desktop/TestPythonCodes/DriverPrediction/sample_submission.csv")
# Analyze Data - Descriptive statistics and visualization
# Data integration, selection, cleaning and pre-processing
# Read train_set and test_set Data
train_set.head()
train_set.tail()
test_set.head()
test_set.tail()
train_set.info() # 595212 rows and 59 Columns
train_set.dtypes
train_set.shape
train_set.describe()
train_set.columns
train_set.isnull().sum() # check missing values
test_set.info()
test_set.dtypes
test_set.shape
test_set.describe()
test_set.columns
test_set.isnull().sum() # check missing values
#Obseveration on Memory Usage
train_set.info(memory_usage='deep',verbose=False)
test_set.info(memory_usage='deep',verbose=False)
# Missing Data
print("Train Missing Data: %d" %train_set.isnull().sum().sum())
print("Test Missing Data: %d" %test_set.isnull().sum().sum())
train_missing_count = (train_set == -1).sum()
plt.rcParams['figure.figsize'] = (15,8)
train_missing_count.plot.bar()
plt.show()
test_missing_count = (test_set == -1).sum()
test_missing_count.plot.bar()
plt.show()
# Display Report
from pandas_profiling import ProfileReport
profile1 = ProfileReport(train_set)
profile1.to_file(outputfile="C:/Users/Tin Hang/Desktop/TestPythonCodes/DriverPrediction/train_set_data.html")
profile2 = ProfileReport(test_set)
profile2.to_file(outputfile="C:/Users/Tin Hang/Desktop/TestPythonCodes/DriverPrediction/test_set_data.html")
# Analysis Features
unique_counter = Counter()
for col in train_set.columns:
unique_counter[col] = len(np.sort(train_set[col].unique()))
binary_columns = [ col for col , val in unique_counter.items() if(val==2)]
binary_column_sum = []
for col in binary_columns:
binary_column_sum.append(train_set[col].sum())
#List of binary columns
binary_columns
# data to plot
n_groups = len(binary_columns)
one_cols = binary_column_sum
zero_cols = train_set.shape[0] - np.asarray(binary_column_sum)
# create plot
plt.rcParams['figure.figsize'] = (15,8)
fig, ax = plt.subplots()
index = np.arange(n_groups)
bar_width = 0.3
opacity = 0.8
rects1 = plt.bar(index, one_cols, bar_width,
alpha=opacity,
color='g',
label='1')
rects2 = plt.bar(index + bar_width, zero_cols, bar_width,
alpha=opacity,
color='b',
label='0')
plt.ylabel('#', fontsize=14)
plt.title('Binary Features', fontsize=20)
plt.xticks(index + bar_width/2, binary_columns, rotation='vertical', fontsize=12)
plt.legend()
plt.tight_layout()
plt.show()
# Catagorical and other Features
# Univariate Histograms
columns_multi = [x for x in list(train_set.columns) if x not in binary_columns]
columns_multi.remove('id')
columns_multi
plt.rcParams['figure.figsize'] = (15,40)
names = columns_multi
train_set.hist(layout = (10,4), column = columns_multi)
plt.show()
names = columns_multi
train_set.plot(kind='density', subplots=True, layout=(15,4), sharex=False)
plt.show()
# Important Features
# Create a random forest classifier
clf = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1)
# Train the classifier
clf.fit(train.iloc[:,2:], train.iloc[:,1])
# Print the name and gini importance of each feature
feature_importances = sorted(zip(clf.feature_importances_, list(train.columns)[2:]), reverse=True)
objects = (list(zip(*feature_importances)[1]))
y_pos = np.arange(len(objects))
performance = np.array(zip(*feature_importances)[0])
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects, rotation='vertical')
plt.ylabel('Importance')
plt.title('Feature Importances using Random forest')
plt.show()
# Feature Importance
# fit an Extra Trees model to the data
model = ExtraTreesClassifier()
model.fit(train.iloc[:,2:], train.iloc[:,1])
# Print the name and gini importance of each feature
feature_importances = sorted(zip(model.feature_importances_, list(train.columns)[2:]), reverse=True)
objects = (list(zip(*feature_importances)[1]))
y_pos = np.arange(len(objects))
performance = np.array(zip(*feature_importances)[0])
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects, rotation='vertical')
plt.ylabel('Importance')
plt.title('Feature Importances using Extra Trees Classifier')
plt.show()
X = train.iloc[:,2:]
y = train.iloc[:,1]
# fit model no training data
model = XGBClassifier()
model.fit(X, y)
# plot
feature_importances = sorted(zip(model.feature_importances_, list(train.columns)[2:]), reverse=True)
objects = (list(zip(*feature_importances)[1]))
y_pos = np.arange(len(objects))
performance = np.array(zip(*feature_importances)[0])
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects, rotation='vertical')
plt.ylabel('Importance')
plt.title('Feature Importances using XGBoost')
plt.show()
# Correction of Train Dat
# Correction Matrix Plot
names = train.columns
correlations = train.corr()
# plot correlation matrix
plt.rcParams['figure.figsize'] = (15,12)
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(correlations, vmin=-1, vmax=1)
fig.colorbar(cax)
ticks = np.arange(0,59,1)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels(names, rotation=90)
ax.set_yticklabels(names)
plt.show()
# Analysis Missing Data
train_missing_count = (train == -1).sum()
plt.rcParams['figure.figsize'] = (15,8)
train_missing_count.plot.bar()
plt.show()
test_missing_count = (test == -1).sum()
test_missing_count.plot.bar()
plt.show()
target = train_set['target'].copy()
train_set = train_set.drop(['id', 'target'], axis=1)
pd.value_counts(pd.value_counts(Train_set['ps_reg_03'].values['-1'], sort=False).values, sort=False)
train_set['ps_reg_03'].value_counts()
(train_set['ps_reg_03'] == -1).sum()
print("Feature Name Unique NaNCount")
for column in train_set:
print("{0:15} {1:6d} {2:6}".format(column, Train_set[column].nunique(), (Train_set[column] == -1).sum()))
# Drop Columns that has -1 because the feature has missing from observations
for columns in train_set:
if '-1' in columns:
del train_set[columns]
# Train_set.drop(columns for columns in Train_set.columns if "-1" in columns], axis=1, inplace=True)
for col_names in train_set:
if 'ps_calc' in col_names:
del train_set[col_names]
# Count the numbers of int64, float64, bool or object/string features
int_features = train_set.select_dtypes(include = ['int64']).columns.values
float_features = train_set.select_dtypes(include = ['float64']).columns.values
bool_features= train_set.select_dtypes(include = ['bool']).columns.values
categorical_features = train_set.select_dtypes(include = ['object']).columns.values
print('int_features:', int_features)
print('float_features:', float_features)
print('bool_features:', bool_features)
print('categorical_features:', categorical_features)
# Correlations Between Features
correlations = Train_set.corr(method='pearson')
print(correlations)
correlations = (Train_set.iloc[:,2:]).corr()
fig = plt.figure(figsize = (48, 24))
ax = fig.add_subplot(111)
cax = ax.matshow(correlations, vmin=-1, vmax=1)
fig.colorbar(cax)
ticks = np.arange(0, n_col-2, 1)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels(X.columns, rotation = 45)
ax.set_yticklabels(X.columns, rotation = 45)
plt.show()
# Skew for each features
skew = Train_set.skew()
print(skew)
# Visualization - Histograms
Train_set.hist()
plt.show()
Train_set[2:8].hist(figsize=(12,12))
plt.show()
# Visualization - Density Plots for distribution for each features
Train_set.plt(kind='density', subplots=True, layout=(3,3), sharex=False)
plt.show()
# Visualization - Scatterplots
scatter_matrix(Train_set)
plt.show()
# Visualization - Boxplots
Train_set.plt(kind='box', subplots=True, layout=(3,3), sharex=False, sharey=False)
plt.show()
# Visualization - Correlations Matrix Plot
Train_set.corr()
fig, ax = plt.subplots(figsize=(14,14))
ax.matshow(corr)
plt.xticks(range(len(corr.columns)), corr.columns)
plt.yticks(range(len(corr.columns)), corr.columns)