-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathDriverPredict.py
194 lines (154 loc) · 5.56 KB
/
DriverPredict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 2 23:22:09 2017
@author: Tin
"""
# Porto Seguro’s Safe Driver Prediction
# Description: Predict if a Driver will file an insurance claim next year (Define Problem)
# Three Dataset: train.csv, train.csv, sample_submission.csv
# Libraries
import pandas as pd
from pandas.tools.plotting import scatter_matrix
import numpy as np
import matplotlib.pyplot as plt # for plotting
%matplotlib inline
import time
import warnings
warnings.filterwarnings('ignore')
Train_set = pd.read_csv('C:/Users/Tin Hang/Desktop/TestPythonCodes/DriverPrediction/train.csv')
Test_set = pd.read_csv('C:/Users/Tin Hang/Desktop/TestPythonCodes/DriverPrediction/test.csv')
Sample_set = pd.read_csv("C:/Users/Tin Hang/Desktop/TestPythonCodes/DriverPrediction/sample_submission.csv")
from sklearn import model_selection
from sklearn import preprocessing, cross_validation
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.svm import SVC, LinearSVC
# multivariate plot
# scatter plot matrix
scatter_matrix(Train_set)
plt.show()
# Split-out validation dataset
array = Train_set.values
X = array[:,0:58]
Y = array[:,58]
validation_size = 0.15
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=validation_size, random_state=seed)
# Test options and evaluation metric
seed = 7
scoring = 'accuracy'
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('RF', RandomForestClassifier()))
models.append(('MLP', MLPClassifier()))
models.append(('SVMG', SGDClassifier()))
models.append(('SVML', LinearSVC()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
%time
print(msg)
import time
start_time = time.time()
main()
print("--- %s seconds ---" % (time.time() - start_time))
# Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
# Make predictions on validation dataset
svm = SVC()
svm.fit(X_train, Y_train)
predictions = svm.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
# Importance Features
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
y = target
X = Train_set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=.33)
clf = RandomForestRegressor(n_jobs=2, n_estimators=1000)
model = clf.fit(X_train, y_train)
from tabulate import tabulate
headers = ["Features:", "Score:"]
values = sorted(zip(X_train.columns, model.feature_importances_), key=lambda x: x[1] * -1)
print(tabulate(values, headers, tablefmt="plain"))
c_features = len(Train_set)
plt.barh(range(c_features), clf.feature_importances_)
plt.xlabel("Feature importance")
plt.ylabel("Feature name")
plt.yticks(numpy.arange(c_features), feature_names)
plt.figure(figsize=(16,16))
plt.show()
print('Feature importances: {}'
.format(clf.feature_importances_))
# Univariate Statistical - Select features that has the best relationships with the output variable
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
X = Train_set[:,0:56]
Y = Train_set[:,56]
# feature extraction
test = SelectKBest(score_func=chi2, k=4)
fit = test.fit(X, Y)
# summarize scores
set_printoptions(precision=3)
print(fit.scores_)
features = fit.transform(X)
# summarize selected features
print(features[0:56,:])
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
# Recursive Feature Elimination
X = Train_set[:,0:55]
Y = Train_set[:,55]
# feature extraction
model = LogisticRegression()
rfe = RFE(model, 3)
fit = rfe.fit(X, Y)
print("Num Features: %d") % fit.n_features_
print("Selected Features: %s") % fit.support_
print("Feature Ranking: %s") % fit.ranking_
# Principal Component Analysis
from sklearn.decomposition import PCA
X = array[:,0:55]
Y = array[:,55]
# feature extraction
pca = PCA(n_components=3)
fit = pca.fit(X)
# summarize components
print("Explained Variance: %s") % fit.explained_variance_ratio_
print(fit.components_)
# Select the score for each features
from sklearn.ensemble import ExtraTreesClassifier
X = array[:,0:55]
Y = array[:,55]
# feature extraction
model = ExtraTreesClassifier()
model.fit(X, Y)
print(model.feature_importances_)