-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
471 lines (390 loc) · 14.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from sklearn import datasets
from math import *
import operator
import random
import matplotlib.pyplot as plt
iris = datasets.load_iris()
# def binDi(x, n, p):
# return (factorial(n) / (factorial(n - x) * factorial(x))) * pow(p, x) * pow(1 - p, n - x)
# gets the different labels in a list of labels
def getLabel(train):
labels = []
for i in range(len(train)):
if train[i] not in labels:
labels.append(train[i])
return labels
#calculate euclidean distance
def eucliDist(a, b):
d = 0
for i in range(len(a)):
d += pow((a[i] - b[i]), 2)
return sqrt(d)
def kmean(xtrain, k):
# k is the number of classes
# create k centers randomly, in the range of max and min of each attributes
bounds = list(map(list, zip(*xtrain)))
centers = []
for i in range(k):
centers.append([])
for j in range(len(xtrain[0])):
centers[i].append(random.uniform(min(bounds[j]), max(bounds[j])))
while True:
distances = []
# keep old centers in memory to later calculate difference with new centers
oldCenters = []
for i in range(len(centers)):
oldCenters.append([])
for j in range(len(centers[0])):
oldCenters[i].append(centers[i][j])
clusters = []
# for each point, calculate the distance with each center
for i in range(len(xtrain)):
temp = []
for j in range(len(centers)):
temp.append(eucliDist(xtrain[i], centers[j]))
distances.append(temp)
# temporary label all training data with there closest center
for i in range(len(centers)):
clusters.append([])
for i in range(len(xtrain)):
for j in range(len(centers)):
if distances[i][j] == min(distances[i]):
clusters[j].append(xtrain[i])
# move the class center at the mean of the points in its class
for i in range(len(clusters)):
clusters[i] = list(map(list, zip(*clusters[i])))
for i in range(len(centers)):
for j in range(len(centers[0])):
if len(clusters[i]) == 0:
for l in range(len(centers[0])):
centers[i][l] = random.uniform(min(bounds[l]), max(bounds[l]))
break
else:
centers[i][j] = sum(clusters[i][j])/len(clusters[i][j])
# if difference between old and new centers is lower that threshold, center are considerate found
diff = 0
for i in range(len(centers)):
diff += eucliDist(oldCenters[i], centers[i])
if diff < 0.00000001:
return centers
def kmeancl(centers, x):
euclids = []
for i in range(len(centers)):
euclids.append(eucliDist(centers[i], x))
return euclids.index(min(euclids))
# to check what permutation gives the right classes corresponding to the clustering
def kmeanMaxAcc(predict, acc):
accuracies = []
for l in range(len(predict[0])-1):
for j in range(len(predict)):
temp = predict[j][0]
predict[j][0] = predict[j][1]
predict[j][1] = temp
for j in range(len(predict[0])):
for i in range(len(predict)):
temp = predict[i].pop(0)
if temp == 1:
predict[i].append(1)
else:
predict[i].append(0)
accuracies.append(Accuracy(acc, predict))
return max(accuracies)
# classification using knn
def muCl(x_training, ytraining, x, knear):
nearest = {}
for i in range(len(x_training)):
nearest[i] = eucliDist(x_training[i], x)
nearest = sorted(nearest.items(), key=operator.itemgetter(1))
classes = getLabel(ytraining)
class_count = [0]*len(classes)
for i in range(len(ytraining)):
for j in range(len(classes)):
if ytraining[i] == classes[j]:
class_count[j] +=1
k_count = [0]*len(classes)
for i in range(knear):
for j in range(len(classes)):
if ytraining[nearest[i][0]] == classes[j]:
k_count[j] += 1
# kprob = [0]*len(classes)
# for i in range(len(kprob)):
# kprob[i] = ((k_count[i]/class_count[i])*(class_count[i]/len(ytraining))) # /knear/len(x_training)
result = classes[k_count.index(max(k_count))]
# result = []
# for i in range(len(labels)):
# pos = 0
# for j in range(knear):
# if ytraining[nearest[j][0]] == labels[i]:
# pos += 1
# posproba = binDi(pos, knear, labelproba[i])
# neg = knear-pos
# negproba = binDi(pos, knear, 1-labelproba[i])
# if negproba*(1-labelproba[i]) >= posproba*labelproba[i]:
# result.append(1)
# else:
# result.append(0)
# result.append(pos/knear)
# # labelproba = []
# # for i in range(len(labels)):
# # labelproba.append(labelcount[i]/len(ytraining))
#
# nearest = {}
# for i in range(len(xtrain)):
# sqrsum = 0
# for j in range(len(x)):
# sqrsum = sqrsum + pow((xtrain[i][j]-x[j]), 2)
# nearest[i] = sqrt(sqrsum)
# nearest = sorted(nearest.items(), key=operator.itemgetter(1))
# kprob = [0]*len(labels)
# for i in range(knear):
# for j in range(len(labels)):
# # print(i, knear, nearest[i][0], ytraining[nearest[i][0]], labels[j])
# if ytraining[nearest[i][0]] == labels[j]:
# kprob[j] += 1
# # print(kprob)
# for i in range(len(kprob)):
# kprob[i] = kprob[i]/labelcount[i] # *labelproba[i]
#
# result = labels[kprob.index(max(kprob))]
return result
def Accuracy(predict, accur): # using 0/1 loss
error = 0
errors = []
for i in range(len(predict)):
for j in range(len(predict[i])):
if predict[i][j] != accur[i][j]:
errors.append([predict[i],"should be", accur[i]])
error +=1
break
# print(error, "errors are", errors)
return 100*(1 - error / len(predict))
# make list of attribute value for x, and list in format [0, 0, 1] for label for y
x = []
y = []
for i in range(len(iris.data)):
x.append(list(iris.data[i]))
temp = [0]*len(getLabel(iris.target))
temp[iris.target[i]] = 1
y.append(temp)
BRave = []
LPave = []
rakelAve = []
kmeanAve = []
# define the range for the k in knn
firstK = 17
lastK = 17
krange = range(firstK, lastK + 1)
oneK = True # if we already chosed a k
iterations = 10 # number of iterations
if firstK != lastK:
oneK = False
for i in range(len(krange)):
BRave.append([])
LPave.append([])
rakelAve.append([])
kmeanAve.append([])
for r in range(iterations):
# shuffle the data to have homogene data (avoid having whole folder of same class)
tempshuffle = list(zip(x, y))
random.shuffle(tempshuffle)
x, y = zip(*tempshuffle)
# test different k for the knn
for k in krange:
print(k)
# data divided in 10 folder for cross validation
kfolder = 10
#
# to register the accuracy for each iteration of cross-validation
BRacc = []
LPacc = []
rakelacc = []
Kmeanacc = []
# for each folder to be taken as test data
for p in range(kfolder):
xtrain = []
xtest = []
ytrain = []
ytest = []
for i in range(len(iris.data)):
if p*(len(iris.data) / kfolder) <= i < (p + 1)*(len(iris.data) / kfolder):
xtest.append(x[i])
ytest.append(y[i])
else:
xtrain.append(x[i])
ytrain.append(y[i])
centers = kmean(xtrain, 3)
discovered = []
for i in range(len(xtest)):
discovered.append(kmeancl(centers, xtest[i]))
temp = [0] * 3
temp[discovered[i]] = 1
discovered[i] = temp
Kmeanacc.append(kmeanMaxAcc(ytest, discovered))
# Binary relevance
# can create one mor label, when classification
yBR = []
for i in range(len(ytrain[0])):
temp = []
for j in range(len(ytrain)):
temp.append(ytrain[j][i])
yBR.append(temp)
BRresult = []
for i in range(len(xtest)):
temp = []
for j in range(len(ytrain[0])):
temp.append(muCl(xtrain, yBR[j], xtest[i], k))
BRresult.append(temp)
BRacc.append(Accuracy(BRresult, ytest))
# chain classifier ?
# important if doing some NLP
# Label powerset
yLP = []
for i in range(len(ytrain)):
temp = ""
for j in range(len(ytrain[0])):
temp = temp + str(ytrain[i][j])
yLP.append(temp)
LPresult = []
for i in range(len(xtest)):
LPresult.append(muCl(xtrain, yLP, xtest[i], k))
labels = getLabel(yLP)
for i in range(len(LPresult)):
for j in range(len(labels)):
if LPresult[i] == labels[j]:
temp = []
for o in range(len(labels[j])):
temp.append(int(labels[j][o]))
LPresult[i] = temp
# print(LPresult)
# print(ytest)
LPacc.append(Accuracy(ytest, LPresult))
# rRAkel
# divide the different subsets of LP
yrakel = []
for i in range(len(ytrain[0])):
yrakel.append([])
for i in range(len(ytrain)):
for j in range(len(ytrain[0])):
l = 0
temp = ""
for m in range(len(ytrain[0])-1):
if l == j - 1:
l +=1
temp += str(ytrain[i][l])
l +=1
else:
temp += str(ytrain[i][l])
l +=1
yrakel[j].append(temp)
divrakelresult = []
for i in range(len(yrakel)):
temp = []
for j in range(len(xtest)):
temp.append(muCl(xtrain, yrakel[i], xtest[j], k))
divrakelresult.append(temp)
rakelresults = []
labels = []
for i in range(len(yrakel)):
labels.append(getLabel(yrakel[i]))
for i in range(len(divrakelresult[0])):
temp = [0, 0, 0]
for j in range(len(divrakelresult)):
l = 0
for m in range(len(labels[0][0])):
if l == j-1:
l +=1
temp[l] = temp[l] + int(divrakelresult[j][i][m])
l +=1
else:
temp[l] = temp[l] + int(divrakelresult[j][i][m])
l +=1
rakelresults.append(temp)
for i in range(len(rakelresults)):
for j in range(len(rakelresults[i])):
if rakelresults[i][j] > 1:
rakelresults[i][j] = 1
rakelacc.append(Accuracy(ytest, rakelresults))
# # pairwise
# # could be use to decide for a equality or two classes in case of classification
#
# # if we do 4class problem, same principle that rakel
# #
# #
# y1v2 = {}
# y1v3 = {}
# y2v3 = {}
#
# for i in range(len(xtrain)):
# if ytrain[i][0] != ytrain[i][1]:
# y1v2[i] = ytrain[i][0]
# if ytrain[i][0] != ytrain[i][2]:
# y1v3[i] = ytrain[i][0]
# if ytrain[i][1] != ytrain[i][2]:
# y2v3[i] = ytrain[i][1]
#
# # example with 1 or 2
# x1or2 = []
# y1or2 = []
#
# for i in range(len(y1v2)):
# x1or2.append(xtrain[list(y1v2.keys())[i]])
# y1or2.append(list(y1v2.values())[i])
#
# result1or2 = []
# for i in range(len(xtest)):
# result1or2.append(muCl(x1or2, y1or2, xtest[i], k))
#
# print(result1or2)
# # copy-weight
# # same than LP with multi classification since weight is always 1 (one label per instance)
# # not finished
# yCW = []
# for i in range(len(ytrain)):
# temp = []
# for j in range(len(ytrain[0])):
# if ytrain[i][j] == 1:
# temp.append(j)
# yCW.append(temp)
# CWresult = []
# for i in range():
# temp = []
# for j in range():
# if > 0.5:
# temp.append(1)
# else:
# temp.append(0)
# CWresult.append(temp)
# print(yCW)
if oneK:
BRave.append(sum(BRacc) / len(BRacc))
LPave.append(sum(LPacc) / len(LPacc))
rakelAve.append(sum(rakelacc) / len(rakelacc))
kmeanAve.append(sum(Kmeanacc) / len(Kmeanacc))
else:
BRave[k-firstK].append(sum(BRacc) / len(BRacc))
LPave[k-firstK].append(sum(LPacc) / len(LPacc))
rakelAve[k-firstK].append(sum(rakelacc) / len(rakelacc))
kmeanAve[k-firstK].append(sum(Kmeanacc) / len(Kmeanacc))
if oneK :
BRave = sum(BRave) / len(BRave)
LPave = sum(LPave) / len(LPave)
rakelAve = sum(rakelAve) / len(rakelAve)
kmeanAve = sum(kmeanAve) / len(kmeanAve)
print('K-mean clutering accuracy is', kmeanAve, '%')
print('Binary relevance accuracy is', BRave, '%')
print('Label powerset accuracy is', LPave, '%')
print('Rakel result accuracy is', rakelAve, '%')
else:
for r in range(len(krange)):
BRave[r] = sum(BRave[r]) / len(BRave[r])
LPave[r] = sum(LPave[r]) / len(LPave[r])
rakelAve[r] = sum(rakelAve[r]) / len(rakelAve[r])
kmeanAve[r] = sum(kmeanAve[r]) / len(kmeanAve[r])
xaxe = []
for i in krange:
xaxe.append(i)
plt.plot(xaxe, BRave, 'b', label='Binary relevance')
plt.plot(xaxe, LPave, 'g', label='Label powerset')
plt.plot(xaxe, rakelAve, 'r', label='rakel')
plt.legend()
plt.show()