Skip to content

Commit 76a17bf

Browse files
committed
Fix
1 parent 64e56ab commit 76a17bf

File tree

5 files changed

+7
-7
lines changed

5 files changed

+7
-7
lines changed

demo/BERT/notebooks/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# TensorRT Demo with BERT
22

3-
To run the demo Jupyter notebooks in this folder, follow the instructions in the [TRT setup guide](../../../README.md) to build and launch the docker container. Then, use your browswer to open the Jupyter lab interface at <host_name>:8888/lab using the password provided in the terminal.
3+
To run the demo Jupyter notebooks in this folder, follow the instructions in the [TRT setup guide](../../../README.md) to build and launch the docker container. Then, use your browser to open the Jupyter lab interface at <host_name>:8888/lab using the password provided in the terminal.
44

55

66
Notebook list:

demo/Diffusion/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ cd TensorRT
1313

1414
### Launch NVIDIA pytorch container
1515

16-
Install nvidia-docker using [these intructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker).
16+
Install nvidia-docker using [these instructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker).
1717

1818
```bash
1919
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:25.01-py3 /bin/bash
@@ -427,7 +427,7 @@ python3 demo_txt2img_flux.py "a beautiful photograph of Mt. Fuji during cherry b
427427

428428
## Configuration options
429429
- Noise scheduler can be set using `--scheduler <scheduler>`. Note: not all schedulers are available for every version.
430-
- To accelerate engine building time use `--timing-cache <path to cache file>`. The cache file will be created if it does not already exist. Note that performance may degrade if cache files are used across multiple GPU targets. It is recommended to use timing caches only during development. To achieve the best perfromance in deployment, please build engines without timing cache.
430+
- To accelerate engine building time use `--timing-cache <path to cache file>`. The cache file will be created if it does not already exist. Note that performance may degrade if cache files are used across multiple GPU targets. It is recommended to use timing caches only during development. To achieve the best performance in deployment, please build engines without timing cache.
431431
- Specify new directories for storing onnx and engine files when switching between versions, LoRAs, ControlNets, etc. This can be done using `--onnx-dir <new onnx dir>` and `--engine-dir <new engine dir>`.
432432
- Inference performance can be improved by enabling [CUDA graphs](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs) using `--use-cuda-graph`. Enabling CUDA graphs requires fixed input shapes, so this flag must be combined with `--build-static-batch` and cannot be combined with `--build-dynamic-shape`.
433433

demo/Diffusion/demo_controlnet.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ def parseArgs():
9393
seg_image = controlnet_aux.SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")(seg_image)
9494
input_images.append(seg_image.resize((args.height, args.width)))
9595
else:
96-
raise ValueError(f"You should implement the conditonal image of this controlnet: {controlnet}")
96+
raise ValueError(f"You should implement the conditional image of this controlnet: {controlnet}")
9797
assert len(input_images) > 0
9898

9999
kwargs_init_pipeline, kwargs_load_engine, args_run_demo = process_pipeline_args(args)

demo/Diffusion/stable_diffusion_pipeline.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -896,9 +896,9 @@ def infer(
896896
image_strength (float):
897897
Strength of transformation applied to input_image. Must be between 0 and 1.
898898
mask_image (image):
899-
Mask image containg the region to be inpainted.
899+
Mask image containing the region to be inpainted.
900900
controlnet_scales (torch.Tensor)
901-
A tensor which containes ControlNet scales, essential for multi ControlNet.
901+
A tensor which contains ControlNet scales, essential for multi ControlNet.
902902
Must be equal to number of Controlnets.
903903
warmup (bool):
904904
Indicate if this is a warmup run.

demo/Diffusion/stable_video_diffusion_pipeline.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -669,7 +669,7 @@ def __exit__(ctx, exc_type, exc_val, exc_tb):
669669
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
670670
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
671671

672-
# Concatenate image_latents over channels dimention
672+
# Concatenate image_latents over channels dimension
673673
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
674674

675675
# predict the noise residual

0 commit comments

Comments
 (0)