-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
164 lines (132 loc) · 7.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
from torchvision import datasets, transforms, models
from torchvision.datasets import ImageFolder
import torch.nn.functional as F
from PIL import Image
from collections import OrderedDict
import time
import numpy as np
import matplotlib.pyplot as plt
from util import save_checkpoint, load_checkpoint
def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument('--data_dir', action='store')
parser.add_argument('--arch', dest='arch', default='vgg16', choices=['vgg16', 'densenet121'])
parser.add_argument('--learning_rate', dest='learning_rate', default='0.001')
parser.add_argument('--hidden_units', dest='hidden_units', default='512')
parser.add_argument('--epochs', dest='epochs', default='3')
parser.add_argument('--gpu', action='store', default='gpu')
parser.add_argument('--save_dir', dest="save_dir", action="store", default="checkpoint.pth")
return parser.parse_args()
def train(model, criterion, optimizer, dataloaders, epochs, gpu): # dataloaders[0] = train, dataloaders[1] = validation, dataloaders[2] = test
steps = 0
print_every = 10
for e in range(epochs):
running_loss = 0
for ii, (inputs, labels) in enumerate(dataloaders[0]):
steps += 1
if gpu == 'gpu':
model.cuda()
inputs, labels = inputs.to('cuda'), labels.to('cuda') # Move input and label tensors to the default device(use cuda)
else:
model.cpu() # Use cpu other than 'gpu'
# Zeros the gradients on each training pass
optimizer.zero_grad()
# Forward and backward passes
outputs = model.forward(inputs)
# Use the logits to calculate the loss
loss = criterion(outputs, labels)
# Perform a backward pass through the network to calculate the gradients
loss.backward()
# Take a step with the optimizer to update the weights
optimizer.step()
# Calculate the training loss
running_loss += loss.item()
if steps % print_every == 0:
model.eval()
valloss = 0
accuracy= 0
for ii, (inputs2,labels2) in enumerate(dataloaders[1]):
optimizer.zero_grad()
if gpu == 'gpu':
inputs2, labels2 = inputs2.to('cuda') , labels2.to('cuda') # Use cuda
model.to('cuda:0')
else:
# Use the inputs
pass
with torch.no_grad():
outputs = model.forward(inputs2)
valloss = criterion(outputs,labels2)
ps = torch.exp(outputs).data
equality = (labels2.data == ps.max(1)[1])
accuracy += equality.type_as(torch.FloatTensor()).mean()
valloss = valloss / len(dataloaders[1])
accuracy = accuracy /len(dataloaders[1])
print("Epoch: {}/{}... ".format(e+1, epochs),
"Train Loss: {:.4f}".format(running_loss/print_every),
"Validation Loss: {:.4f}".format(valloss),
"Test accuracy: {:.4f}".format(accuracy),
)
running_loss = 0
def main():
args = parse_args()
data_dir = 'flowers'
train_dir = data_dir + '/train'
val_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
train_transforms = transforms.Compose([transforms.RandomRotation(30), transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(), transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
validataion_transforms = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
test_transforms = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image_datasets = [ImageFolder(train_dir, transform=train_transforms),
ImageFolder(val_dir, transform=validataion_transforms),
ImageFolder(test_dir, transform=test_transforms)]
dataloaders = [torch.utils.data.DataLoader(image_datasets[0], batch_size=64, shuffle=True),
torch.utils.data.DataLoader(image_datasets[1], batch_size=64, shuffle=True),
torch.utils.data.DataLoader(image_datasets[2], batch_size=64, shuffle=True)]
model = getattr(models, args.arch)(pretrained=True)
for param in model.parameters():
param.requires_grad = False
if args.arch == "vgg16":
classifier = nn.Sequential(OrderedDict([
('fc1', nn.Linear(25088, 4096)),
('relu', nn.ReLU()),
('dropout', nn.Dropout(0.2)),
('fc2', nn.Linear(4096, 512)),
('relu', nn.ReLU()),
('fc3', nn.Linear(512, 102)),
('output', nn.LogSoftmax(dim=1))]))
elif args.arch == "densenet121":
classifier = nn.Sequential(OrderedDict([
('fc1', nn.Linear(1024, 500)),
('dropout', nn.Dropout(p=0.6)),
('relu', nn.ReLU()),
('fc2', nn.Linear(500, 102)),
('output', nn.LogSoftmax(dim=1))]))
# Update the classifier in the model
model.classifier = classifier
# Define the loss
criterion = nn.NLLLoss()
# Only train the classifier parameters, feature parameters are frozen
optimizer = optim.Adam(model.classifier.parameters(), lr=float(args.learning_rate))
epochs = int(args.epochs)
class_index = image_datasets[0].class_to_idx
# Get the gpu settings
gpu = args.gpu
train(model, criterion, optimizer, dataloaders, epochs, gpu)
model.class_to_idx = class_index
# New save location
path = args.save_dir
save_checkpoint(path, model, optimizer, args, classifier)
if __name__ == "__main__":
main()