|
1 |
| -""" |
2 |
| -This function is used to create the data-set |
3 |
| -""" |
4 |
| - |
5 | 1 | import json
|
6 | 2 | import random
|
7 |
| -import boxes as bx |
| 3 | +from boxes import BoxGenerator |
| 4 | + |
| 5 | +class DatasetCreator: |
| 6 | + """ |
| 7 | + A class to create a dataset for the box packing problem, including truck dimensions and box parameters. |
| 8 | + """ |
| 9 | + def __init__(self, min_boxes=10, max_boxes=36, min_value=50, max_value=500, |
| 10 | + max_truck_dim=(600, 600, 600), min_truck_dim=(50, 50, 50)): |
| 11 | + """ |
| 12 | + Initializes the DatasetCreator with parameters for box and truck dimension ranges. |
| 13 | +
|
| 14 | + Parameters: |
| 15 | + - min_boxes, max_boxes (int): The minimum and maximum number of boxes. |
| 16 | + - min_value, max_value (int): The minimum and maximum value associated with each box. |
| 17 | + - max_truck_dim, min_truck_dim (tuple): The maximum and minimum dimensions for the trucks. |
| 18 | + """ |
| 19 | + self.min_boxes = min_boxes |
| 20 | + self.max_boxes = max_boxes |
| 21 | + self.min_value = min_value |
| 22 | + self.max_value = max_value |
| 23 | + self.max_truck_len, self.max_truck_wid, self.max_truck_ht = max_truck_dim |
| 24 | + self.min_truck_len, self.min_truck_wid, self.min_truck_ht = min_truck_dim |
| 25 | + self.box_generator = BoxGenerator() |
8 | 26 |
|
9 |
| -MIN_BOXES = 10 |
10 |
| -MAX_BOXES = 36 |
11 |
| -MIN_VALUE = 50 |
12 |
| -MAX_VALUE = 500 |
13 |
| -MAX_TRUCK_LEN = 600 |
14 |
| -MIN_TRUCK_LEN = 50 |
15 |
| -MAX_TRUCK_WID = 600 |
16 |
| -MIN_TRUCK_WID = 50 |
17 |
| -MAX_TRUCK_HT = 600 |
18 |
| -MIN_TRUCK_HT = 50 |
| 27 | + def generate_dataset(self): |
| 28 | + """ |
| 29 | + Generates a dataset of packing scenarios, each with a set of boxes and a truck. |
19 | 30 |
|
20 |
| -truck_dim = [[random.randint(MIN_TRUCK_LEN, MAX_TRUCK_LEN), random.randint(MIN_TRUCK_WID, MAX_TRUCK_WID), |
21 |
| - random.randint(MIN_TRUCK_HT, MAX_TRUCK_HT)] for _ in range(5)] |
22 |
| -NUM_BOXES = [ |
23 |
| - [random.randint(MIN_BOXES, MAX_BOXES), random.randint(MIN_BOXES, MAX_BOXES), random.randint(MIN_BOXES, MAX_BOXES), |
24 |
| - random.randint(MIN_BOXES, MAX_BOXES), random.randint(MIN_BOXES, MAX_BOXES)] for _ in range(5)] |
25 |
| -dataset = {} |
26 |
| -i = 0 |
27 |
| -for cont, counts in zip(truck_dim, NUM_BOXES): |
28 |
| - for number in counts: |
29 |
| - packages = bx.generateboxes([[0, 0, 0] + cont], number) |
30 |
| - boxes = [] |
31 |
| - total_value = 0 |
32 |
| - for each in packages: |
33 |
| - l, w, h = each[3:] |
34 |
| - vol = l * w * h |
35 |
| - value = random.randint(MIN_VALUE, MAX_VALUE) |
36 |
| - total_value += value |
37 |
| - boxes.append([l, w, h, vol, value]) |
38 |
| - dataset[i] = {'truck dimension': cont, 'number': number, 'boxes': boxes, 'solution': packages, |
39 |
| - 'total value': total_value} |
40 |
| - i += 1 |
| 31 | + Returns: |
| 32 | + - A dictionary representing the dataset, where each key is a scenario with truck dimensions, |
| 33 | + box parameters, and total value. |
| 34 | + """ |
| 35 | + truck_dim = [[random.randint(self.min_truck_len, self.max_truck_len), |
| 36 | + random.randint(self.min_truck_wid, self.max_truck_wid), |
| 37 | + random.randint(self.min_truck_ht, self.max_truck_ht)] for _ in range(5)] |
| 38 | + num_boxes = [[random.randint(self.min_boxes, self.max_boxes) for _ in range(5)] for _ in range(5)] |
| 39 | + dataset = {} |
| 40 | + i = 0 |
| 41 | + origin = [0,0,0] |
| 42 | + for truck_dimensions, box_counts in zip(truck_dim, num_boxes): |
| 43 | + for number_of_boxes in box_counts: |
| 44 | + # Generate boxes within the truck's volume, defined by starting at the origin [0, 0, 0] and truck_dimensions [length, width, height] |
| 45 | + packages = self.box_generator.generate_boxes([origin + truck_dimensions], number_of_boxes) |
| 46 | + boxes = [] |
| 47 | + total_value = 0 |
| 48 | + for each in packages: |
| 49 | + l, w, h = each[3:] |
| 50 | + vol = l * w * h |
| 51 | + value = random.randint(self.min_value, self.max_value) |
| 52 | + total_value += value |
| 53 | + boxes.append([l, w, h, vol, value]) |
| 54 | + dataset[str(i)] = {'truck dimension': truck_dimensions, 'number': number_of_boxes, 'boxes': boxes, 'solution': packages, |
| 55 | + 'total value': total_value} |
| 56 | + i += 1 |
| 57 | + return dataset |
41 | 58 |
|
42 |
| -with open('input.json', 'w') as outfile: |
43 |
| - json.dump(dataset, outfile) |
| 59 | + def save_to_file(self, dataset, filename='input.json'): |
| 60 | + with open(filename, 'w') as outfile: |
| 61 | + json.dump(dataset, outfile) |
0 commit comments