Skip to content

Commit 941e739

Browse files
surajpaibrcremesepre-commit-ci[bot]KumoLiu
authored
Add MedNext implementation (#8004)
Fixes #7786 ### Description Added MedNext architectures implementation for MONAI. Since a lot of the code is heavily sourced from the original MedNext repo, https://github.com/MIC-DKFZ/MedNeXt, I wanted to check if there is an attribution policy with regarded to borrowed source code. I've added a derivative notice bellow the monai copyright comment. Let me know if this needs to be changed. The blocks have been taken almost as is but the network implementation has been changed largely to allow flexible blocks and follow MONAI segresnet styling. ### Types of changes <!--- Put an `x` in all the boxes that apply, and remove the not applicable items --> - [x] Non-breaking change (fix or new feature that would not break existing functionality). - [ ] Breaking change (fix or new feature that would cause existing functionality to change). - [x] New tests added to cover the changes. - [ ] Integration tests passed locally by running `./runtests.sh -f -u --net --coverage`. - [ ] Quick tests passed locally by running `./runtests.sh --quick --unittests --disttests`. - [x] In-line docstrings updated. - [ ] Documentation updated, tested `make html` command in the `docs/` folder. --------- Signed-off-by: Suraj Pai <[email protected]> Signed-off-by: Robin CREMESE <[email protected]> Co-authored-by: Robin CREMESE <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: YunLiu <[email protected]>
1 parent b6663b9 commit 941e739

File tree

5 files changed

+805
-0
lines changed

5 files changed

+805
-0
lines changed

monai/networks/blocks/__init__.py

+1
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,7 @@
2626
from .fcn import FCN, GCN, MCFCN, Refine
2727
from .feature_pyramid_network import ExtraFPNBlock, FeaturePyramidNetwork, LastLevelMaxPool, LastLevelP6P7
2828
from .localnet_block import LocalNetDownSampleBlock, LocalNetFeatureExtractorBlock, LocalNetUpSampleBlock
29+
from .mednext_block import MedNeXtBlock, MedNeXtDownBlock, MedNeXtOutBlock, MedNeXtUpBlock
2930
from .mlp import MLPBlock
3031
from .patchembedding import PatchEmbed, PatchEmbeddingBlock
3132
from .regunet_block import RegistrationDownSampleBlock, RegistrationExtractionBlock, RegistrationResidualConvBlock
+309
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,309 @@
1+
# Copyright (c) MONAI Consortium
2+
# Licensed under the Apache License, Version 2.0 (the "License");
3+
# you may not use this file except in compliance with the License.
4+
# You may obtain a copy of the License at
5+
# http://www.apache.org/licenses/LICENSE-2.0
6+
# Unless required by applicable law or agreed to in writing, software
7+
# distributed under the License is distributed on an "AS IS" BASIS,
8+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9+
# See the License for the specific language governing permissions and
10+
# limitations under the License.
11+
12+
# Portions of this code are derived from the original repository at:
13+
# https://github.com/MIC-DKFZ/MedNeXt
14+
# and are used under the terms of the Apache License, Version 2.0.
15+
16+
from __future__ import annotations
17+
18+
import torch
19+
import torch.nn as nn
20+
21+
all = ["MedNeXtBlock", "MedNeXtDownBlock", "MedNeXtUpBlock", "MedNeXtOutBlock"]
22+
23+
24+
def get_conv_layer(spatial_dim: int = 3, transpose: bool = False):
25+
if spatial_dim == 2:
26+
return nn.ConvTranspose2d if transpose else nn.Conv2d
27+
else: # spatial_dim == 3
28+
return nn.ConvTranspose3d if transpose else nn.Conv3d
29+
30+
31+
class MedNeXtBlock(nn.Module):
32+
"""
33+
MedNeXtBlock class for the MedNeXt model.
34+
35+
Args:
36+
in_channels (int): Number of input channels.
37+
out_channels (int): Number of output channels.
38+
expansion_ratio (int): Expansion ratio for the block. Defaults to 4.
39+
kernel_size (int): Kernel size for convolutions. Defaults to 7.
40+
use_residual_connection (int): Whether to use residual connection. Defaults to True.
41+
norm_type (str): Type of normalization to use. Defaults to "group".
42+
dim (str): Dimension of the input. Can be "2d" or "3d". Defaults to "3d".
43+
global_resp_norm (bool): Whether to use global response normalization. Defaults to False.
44+
"""
45+
46+
def __init__(
47+
self,
48+
in_channels: int,
49+
out_channels: int,
50+
expansion_ratio: int = 4,
51+
kernel_size: int = 7,
52+
use_residual_connection: int = True,
53+
norm_type: str = "group",
54+
dim="3d",
55+
global_resp_norm=False,
56+
):
57+
58+
super().__init__()
59+
60+
self.do_res = use_residual_connection
61+
62+
self.dim = dim
63+
conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3)
64+
global_resp_norm_param_shape = (1,) * (2 if dim == "2d" else 3)
65+
# First convolution layer with DepthWise Convolutions
66+
self.conv1 = conv(
67+
in_channels=in_channels,
68+
out_channels=in_channels,
69+
kernel_size=kernel_size,
70+
stride=1,
71+
padding=kernel_size // 2,
72+
groups=in_channels,
73+
)
74+
75+
# Normalization Layer. GroupNorm is used by default.
76+
if norm_type == "group":
77+
self.norm = nn.GroupNorm(num_groups=in_channels, num_channels=in_channels) # type: ignore
78+
elif norm_type == "layer":
79+
self.norm = nn.LayerNorm(
80+
normalized_shape=[in_channels] + [kernel_size] * (2 if dim == "2d" else 3) # type: ignore
81+
)
82+
# Second convolution (Expansion) layer with Conv3D 1x1x1
83+
self.conv2 = conv(
84+
in_channels=in_channels, out_channels=expansion_ratio * in_channels, kernel_size=1, stride=1, padding=0
85+
)
86+
87+
# GeLU activations
88+
self.act = nn.GELU()
89+
90+
# Third convolution (Compression) layer with Conv3D 1x1x1
91+
self.conv3 = conv(
92+
in_channels=expansion_ratio * in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0
93+
)
94+
95+
self.global_resp_norm = global_resp_norm
96+
if self.global_resp_norm:
97+
global_resp_norm_param_shape = (1, expansion_ratio * in_channels) + global_resp_norm_param_shape
98+
self.global_resp_beta = nn.Parameter(torch.zeros(global_resp_norm_param_shape), requires_grad=True)
99+
self.global_resp_gamma = nn.Parameter(torch.zeros(global_resp_norm_param_shape), requires_grad=True)
100+
101+
def forward(self, x):
102+
"""
103+
Forward pass of the MedNeXtBlock.
104+
105+
Args:
106+
x (torch.Tensor): Input tensor.
107+
108+
Returns:
109+
torch.Tensor: Output tensor.
110+
"""
111+
x1 = x
112+
x1 = self.conv1(x1)
113+
x1 = self.act(self.conv2(self.norm(x1)))
114+
115+
if self.global_resp_norm:
116+
# gamma, beta: learnable affine transform parameters
117+
# X: input of shape (N,C,H,W,D)
118+
if self.dim == "2d":
119+
gx = torch.norm(x1, p=2, dim=(-2, -1), keepdim=True)
120+
else:
121+
gx = torch.norm(x1, p=2, dim=(-3, -2, -1), keepdim=True)
122+
nx = gx / (gx.mean(dim=1, keepdim=True) + 1e-6)
123+
x1 = self.global_resp_gamma * (x1 * nx) + self.global_resp_beta + x1
124+
x1 = self.conv3(x1)
125+
if self.do_res:
126+
x1 = x + x1
127+
return x1
128+
129+
130+
class MedNeXtDownBlock(MedNeXtBlock):
131+
"""
132+
MedNeXtDownBlock class for downsampling in the MedNeXt model.
133+
134+
Args:
135+
in_channels (int): Number of input channels.
136+
out_channels (int): Number of output channels.
137+
expansion_ratio (int): Expansion ratio for the block. Defaults to 4.
138+
kernel_size (int): Kernel size for convolutions. Defaults to 7.
139+
use_residual_connection (bool): Whether to use residual connection. Defaults to False.
140+
norm_type (str): Type of normalization to use. Defaults to "group".
141+
dim (str): Dimension of the input. Can be "2d" or "3d". Defaults to "3d".
142+
global_resp_norm (bool): Whether to use global response normalization. Defaults to False.
143+
"""
144+
145+
def __init__(
146+
self,
147+
in_channels: int,
148+
out_channels: int,
149+
expansion_ratio: int = 4,
150+
kernel_size: int = 7,
151+
use_residual_connection: bool = False,
152+
norm_type: str = "group",
153+
dim: str = "3d",
154+
global_resp_norm: bool = False,
155+
):
156+
157+
super().__init__(
158+
in_channels,
159+
out_channels,
160+
expansion_ratio,
161+
kernel_size,
162+
use_residual_connection=False,
163+
norm_type=norm_type,
164+
dim=dim,
165+
global_resp_norm=global_resp_norm,
166+
)
167+
168+
conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3)
169+
self.resample_do_res = use_residual_connection
170+
if use_residual_connection:
171+
self.res_conv = conv(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=2)
172+
173+
self.conv1 = conv(
174+
in_channels=in_channels,
175+
out_channels=in_channels,
176+
kernel_size=kernel_size,
177+
stride=2,
178+
padding=kernel_size // 2,
179+
groups=in_channels,
180+
)
181+
182+
def forward(self, x):
183+
"""
184+
Forward pass of the MedNeXtDownBlock.
185+
186+
Args:
187+
x (torch.Tensor): Input tensor.
188+
189+
Returns:
190+
torch.Tensor: Output tensor.
191+
"""
192+
x1 = super().forward(x)
193+
194+
if self.resample_do_res:
195+
res = self.res_conv(x)
196+
x1 = x1 + res
197+
198+
return x1
199+
200+
201+
class MedNeXtUpBlock(MedNeXtBlock):
202+
"""
203+
MedNeXtUpBlock class for upsampling in the MedNeXt model.
204+
205+
Args:
206+
in_channels (int): Number of input channels.
207+
out_channels (int): Number of output channels.
208+
expansion_ratio (int): Expansion ratio for the block. Defaults to 4.
209+
kernel_size (int): Kernel size for convolutions. Defaults to 7.
210+
use_residual_connection (bool): Whether to use residual connection. Defaults to False.
211+
norm_type (str): Type of normalization to use. Defaults to "group".
212+
dim (str): Dimension of the input. Can be "2d" or "3d". Defaults to "3d".
213+
global_resp_norm (bool): Whether to use global response normalization. Defaults to False.
214+
"""
215+
216+
def __init__(
217+
self,
218+
in_channels: int,
219+
out_channels: int,
220+
expansion_ratio: int = 4,
221+
kernel_size: int = 7,
222+
use_residual_connection: bool = False,
223+
norm_type: str = "group",
224+
dim: str = "3d",
225+
global_resp_norm: bool = False,
226+
):
227+
super().__init__(
228+
in_channels,
229+
out_channels,
230+
expansion_ratio,
231+
kernel_size,
232+
use_residual_connection=False,
233+
norm_type=norm_type,
234+
dim=dim,
235+
global_resp_norm=global_resp_norm,
236+
)
237+
238+
self.resample_do_res = use_residual_connection
239+
240+
self.dim = dim
241+
conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3, transpose=True)
242+
if use_residual_connection:
243+
self.res_conv = conv(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=2)
244+
245+
self.conv1 = conv(
246+
in_channels=in_channels,
247+
out_channels=in_channels,
248+
kernel_size=kernel_size,
249+
stride=2,
250+
padding=kernel_size // 2,
251+
groups=in_channels,
252+
)
253+
254+
def forward(self, x):
255+
"""
256+
Forward pass of the MedNeXtUpBlock.
257+
258+
Args:
259+
x (torch.Tensor): Input tensor.
260+
261+
Returns:
262+
torch.Tensor: Output tensor.
263+
"""
264+
x1 = super().forward(x)
265+
# Asymmetry but necessary to match shape
266+
267+
if self.dim == "2d":
268+
x1 = torch.nn.functional.pad(x1, (1, 0, 1, 0))
269+
else:
270+
x1 = torch.nn.functional.pad(x1, (1, 0, 1, 0, 1, 0))
271+
272+
if self.resample_do_res:
273+
res = self.res_conv(x)
274+
if self.dim == "2d":
275+
res = torch.nn.functional.pad(res, (1, 0, 1, 0))
276+
else:
277+
res = torch.nn.functional.pad(res, (1, 0, 1, 0, 1, 0))
278+
x1 = x1 + res
279+
280+
return x1
281+
282+
283+
class MedNeXtOutBlock(nn.Module):
284+
"""
285+
MedNeXtOutBlock class for the output block in the MedNeXt model.
286+
287+
Args:
288+
in_channels (int): Number of input channels.
289+
n_classes (int): Number of output classes.
290+
dim (str): Dimension of the input. Can be "2d" or "3d".
291+
"""
292+
293+
def __init__(self, in_channels, n_classes, dim):
294+
super().__init__()
295+
296+
conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3, transpose=True)
297+
self.conv_out = conv(in_channels, n_classes, kernel_size=1)
298+
299+
def forward(self, x):
300+
"""
301+
Forward pass of the MedNeXtOutBlock.
302+
303+
Args:
304+
x (torch.Tensor): Input tensor.
305+
306+
Returns:
307+
torch.Tensor: Output tensor.
308+
"""
309+
return self.conv_out(x)

monai/networks/nets/__init__.py

+19
Original file line numberDiff line numberDiff line change
@@ -53,6 +53,25 @@
5353
from .generator import Generator
5454
from .highresnet import HighResBlock, HighResNet
5555
from .hovernet import Hovernet, HoVernet, HoVerNet, HoverNet
56+
from .mednext import (
57+
MedNeXt,
58+
MedNext,
59+
MedNextB,
60+
MedNeXtB,
61+
MedNextBase,
62+
MedNextL,
63+
MedNeXtL,
64+
MedNeXtLarge,
65+
MedNextLarge,
66+
MedNextM,
67+
MedNeXtM,
68+
MedNeXtMedium,
69+
MedNextMedium,
70+
MedNextS,
71+
MedNeXtS,
72+
MedNeXtSmall,
73+
MedNextSmall,
74+
)
5675
from .milmodel import MILModel
5776
from .netadapter import NetAdapter
5877
from .patchgan_discriminator import MultiScalePatchDiscriminator, PatchDiscriminator

0 commit comments

Comments
 (0)