|
| 1 | +# Copyright (c) MONAI Consortium |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +# Unless required by applicable law or agreed to in writing, software |
| 7 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +# See the License for the specific language governing permissions and |
| 10 | +# limitations under the License. |
| 11 | + |
| 12 | +# Portions of this code are derived from the original repository at: |
| 13 | +# https://github.com/MIC-DKFZ/MedNeXt |
| 14 | +# and are used under the terms of the Apache License, Version 2.0. |
| 15 | + |
| 16 | +from __future__ import annotations |
| 17 | + |
| 18 | +import torch |
| 19 | +import torch.nn as nn |
| 20 | + |
| 21 | +all = ["MedNeXtBlock", "MedNeXtDownBlock", "MedNeXtUpBlock", "MedNeXtOutBlock"] |
| 22 | + |
| 23 | + |
| 24 | +def get_conv_layer(spatial_dim: int = 3, transpose: bool = False): |
| 25 | + if spatial_dim == 2: |
| 26 | + return nn.ConvTranspose2d if transpose else nn.Conv2d |
| 27 | + else: # spatial_dim == 3 |
| 28 | + return nn.ConvTranspose3d if transpose else nn.Conv3d |
| 29 | + |
| 30 | + |
| 31 | +class MedNeXtBlock(nn.Module): |
| 32 | + """ |
| 33 | + MedNeXtBlock class for the MedNeXt model. |
| 34 | +
|
| 35 | + Args: |
| 36 | + in_channels (int): Number of input channels. |
| 37 | + out_channels (int): Number of output channels. |
| 38 | + expansion_ratio (int): Expansion ratio for the block. Defaults to 4. |
| 39 | + kernel_size (int): Kernel size for convolutions. Defaults to 7. |
| 40 | + use_residual_connection (int): Whether to use residual connection. Defaults to True. |
| 41 | + norm_type (str): Type of normalization to use. Defaults to "group". |
| 42 | + dim (str): Dimension of the input. Can be "2d" or "3d". Defaults to "3d". |
| 43 | + global_resp_norm (bool): Whether to use global response normalization. Defaults to False. |
| 44 | + """ |
| 45 | + |
| 46 | + def __init__( |
| 47 | + self, |
| 48 | + in_channels: int, |
| 49 | + out_channels: int, |
| 50 | + expansion_ratio: int = 4, |
| 51 | + kernel_size: int = 7, |
| 52 | + use_residual_connection: int = True, |
| 53 | + norm_type: str = "group", |
| 54 | + dim="3d", |
| 55 | + global_resp_norm=False, |
| 56 | + ): |
| 57 | + |
| 58 | + super().__init__() |
| 59 | + |
| 60 | + self.do_res = use_residual_connection |
| 61 | + |
| 62 | + self.dim = dim |
| 63 | + conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3) |
| 64 | + global_resp_norm_param_shape = (1,) * (2 if dim == "2d" else 3) |
| 65 | + # First convolution layer with DepthWise Convolutions |
| 66 | + self.conv1 = conv( |
| 67 | + in_channels=in_channels, |
| 68 | + out_channels=in_channels, |
| 69 | + kernel_size=kernel_size, |
| 70 | + stride=1, |
| 71 | + padding=kernel_size // 2, |
| 72 | + groups=in_channels, |
| 73 | + ) |
| 74 | + |
| 75 | + # Normalization Layer. GroupNorm is used by default. |
| 76 | + if norm_type == "group": |
| 77 | + self.norm = nn.GroupNorm(num_groups=in_channels, num_channels=in_channels) # type: ignore |
| 78 | + elif norm_type == "layer": |
| 79 | + self.norm = nn.LayerNorm( |
| 80 | + normalized_shape=[in_channels] + [kernel_size] * (2 if dim == "2d" else 3) # type: ignore |
| 81 | + ) |
| 82 | + # Second convolution (Expansion) layer with Conv3D 1x1x1 |
| 83 | + self.conv2 = conv( |
| 84 | + in_channels=in_channels, out_channels=expansion_ratio * in_channels, kernel_size=1, stride=1, padding=0 |
| 85 | + ) |
| 86 | + |
| 87 | + # GeLU activations |
| 88 | + self.act = nn.GELU() |
| 89 | + |
| 90 | + # Third convolution (Compression) layer with Conv3D 1x1x1 |
| 91 | + self.conv3 = conv( |
| 92 | + in_channels=expansion_ratio * in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0 |
| 93 | + ) |
| 94 | + |
| 95 | + self.global_resp_norm = global_resp_norm |
| 96 | + if self.global_resp_norm: |
| 97 | + global_resp_norm_param_shape = (1, expansion_ratio * in_channels) + global_resp_norm_param_shape |
| 98 | + self.global_resp_beta = nn.Parameter(torch.zeros(global_resp_norm_param_shape), requires_grad=True) |
| 99 | + self.global_resp_gamma = nn.Parameter(torch.zeros(global_resp_norm_param_shape), requires_grad=True) |
| 100 | + |
| 101 | + def forward(self, x): |
| 102 | + """ |
| 103 | + Forward pass of the MedNeXtBlock. |
| 104 | +
|
| 105 | + Args: |
| 106 | + x (torch.Tensor): Input tensor. |
| 107 | +
|
| 108 | + Returns: |
| 109 | + torch.Tensor: Output tensor. |
| 110 | + """ |
| 111 | + x1 = x |
| 112 | + x1 = self.conv1(x1) |
| 113 | + x1 = self.act(self.conv2(self.norm(x1))) |
| 114 | + |
| 115 | + if self.global_resp_norm: |
| 116 | + # gamma, beta: learnable affine transform parameters |
| 117 | + # X: input of shape (N,C,H,W,D) |
| 118 | + if self.dim == "2d": |
| 119 | + gx = torch.norm(x1, p=2, dim=(-2, -1), keepdim=True) |
| 120 | + else: |
| 121 | + gx = torch.norm(x1, p=2, dim=(-3, -2, -1), keepdim=True) |
| 122 | + nx = gx / (gx.mean(dim=1, keepdim=True) + 1e-6) |
| 123 | + x1 = self.global_resp_gamma * (x1 * nx) + self.global_resp_beta + x1 |
| 124 | + x1 = self.conv3(x1) |
| 125 | + if self.do_res: |
| 126 | + x1 = x + x1 |
| 127 | + return x1 |
| 128 | + |
| 129 | + |
| 130 | +class MedNeXtDownBlock(MedNeXtBlock): |
| 131 | + """ |
| 132 | + MedNeXtDownBlock class for downsampling in the MedNeXt model. |
| 133 | +
|
| 134 | + Args: |
| 135 | + in_channels (int): Number of input channels. |
| 136 | + out_channels (int): Number of output channels. |
| 137 | + expansion_ratio (int): Expansion ratio for the block. Defaults to 4. |
| 138 | + kernel_size (int): Kernel size for convolutions. Defaults to 7. |
| 139 | + use_residual_connection (bool): Whether to use residual connection. Defaults to False. |
| 140 | + norm_type (str): Type of normalization to use. Defaults to "group". |
| 141 | + dim (str): Dimension of the input. Can be "2d" or "3d". Defaults to "3d". |
| 142 | + global_resp_norm (bool): Whether to use global response normalization. Defaults to False. |
| 143 | + """ |
| 144 | + |
| 145 | + def __init__( |
| 146 | + self, |
| 147 | + in_channels: int, |
| 148 | + out_channels: int, |
| 149 | + expansion_ratio: int = 4, |
| 150 | + kernel_size: int = 7, |
| 151 | + use_residual_connection: bool = False, |
| 152 | + norm_type: str = "group", |
| 153 | + dim: str = "3d", |
| 154 | + global_resp_norm: bool = False, |
| 155 | + ): |
| 156 | + |
| 157 | + super().__init__( |
| 158 | + in_channels, |
| 159 | + out_channels, |
| 160 | + expansion_ratio, |
| 161 | + kernel_size, |
| 162 | + use_residual_connection=False, |
| 163 | + norm_type=norm_type, |
| 164 | + dim=dim, |
| 165 | + global_resp_norm=global_resp_norm, |
| 166 | + ) |
| 167 | + |
| 168 | + conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3) |
| 169 | + self.resample_do_res = use_residual_connection |
| 170 | + if use_residual_connection: |
| 171 | + self.res_conv = conv(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=2) |
| 172 | + |
| 173 | + self.conv1 = conv( |
| 174 | + in_channels=in_channels, |
| 175 | + out_channels=in_channels, |
| 176 | + kernel_size=kernel_size, |
| 177 | + stride=2, |
| 178 | + padding=kernel_size // 2, |
| 179 | + groups=in_channels, |
| 180 | + ) |
| 181 | + |
| 182 | + def forward(self, x): |
| 183 | + """ |
| 184 | + Forward pass of the MedNeXtDownBlock. |
| 185 | +
|
| 186 | + Args: |
| 187 | + x (torch.Tensor): Input tensor. |
| 188 | +
|
| 189 | + Returns: |
| 190 | + torch.Tensor: Output tensor. |
| 191 | + """ |
| 192 | + x1 = super().forward(x) |
| 193 | + |
| 194 | + if self.resample_do_res: |
| 195 | + res = self.res_conv(x) |
| 196 | + x1 = x1 + res |
| 197 | + |
| 198 | + return x1 |
| 199 | + |
| 200 | + |
| 201 | +class MedNeXtUpBlock(MedNeXtBlock): |
| 202 | + """ |
| 203 | + MedNeXtUpBlock class for upsampling in the MedNeXt model. |
| 204 | +
|
| 205 | + Args: |
| 206 | + in_channels (int): Number of input channels. |
| 207 | + out_channels (int): Number of output channels. |
| 208 | + expansion_ratio (int): Expansion ratio for the block. Defaults to 4. |
| 209 | + kernel_size (int): Kernel size for convolutions. Defaults to 7. |
| 210 | + use_residual_connection (bool): Whether to use residual connection. Defaults to False. |
| 211 | + norm_type (str): Type of normalization to use. Defaults to "group". |
| 212 | + dim (str): Dimension of the input. Can be "2d" or "3d". Defaults to "3d". |
| 213 | + global_resp_norm (bool): Whether to use global response normalization. Defaults to False. |
| 214 | + """ |
| 215 | + |
| 216 | + def __init__( |
| 217 | + self, |
| 218 | + in_channels: int, |
| 219 | + out_channels: int, |
| 220 | + expansion_ratio: int = 4, |
| 221 | + kernel_size: int = 7, |
| 222 | + use_residual_connection: bool = False, |
| 223 | + norm_type: str = "group", |
| 224 | + dim: str = "3d", |
| 225 | + global_resp_norm: bool = False, |
| 226 | + ): |
| 227 | + super().__init__( |
| 228 | + in_channels, |
| 229 | + out_channels, |
| 230 | + expansion_ratio, |
| 231 | + kernel_size, |
| 232 | + use_residual_connection=False, |
| 233 | + norm_type=norm_type, |
| 234 | + dim=dim, |
| 235 | + global_resp_norm=global_resp_norm, |
| 236 | + ) |
| 237 | + |
| 238 | + self.resample_do_res = use_residual_connection |
| 239 | + |
| 240 | + self.dim = dim |
| 241 | + conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3, transpose=True) |
| 242 | + if use_residual_connection: |
| 243 | + self.res_conv = conv(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=2) |
| 244 | + |
| 245 | + self.conv1 = conv( |
| 246 | + in_channels=in_channels, |
| 247 | + out_channels=in_channels, |
| 248 | + kernel_size=kernel_size, |
| 249 | + stride=2, |
| 250 | + padding=kernel_size // 2, |
| 251 | + groups=in_channels, |
| 252 | + ) |
| 253 | + |
| 254 | + def forward(self, x): |
| 255 | + """ |
| 256 | + Forward pass of the MedNeXtUpBlock. |
| 257 | +
|
| 258 | + Args: |
| 259 | + x (torch.Tensor): Input tensor. |
| 260 | +
|
| 261 | + Returns: |
| 262 | + torch.Tensor: Output tensor. |
| 263 | + """ |
| 264 | + x1 = super().forward(x) |
| 265 | + # Asymmetry but necessary to match shape |
| 266 | + |
| 267 | + if self.dim == "2d": |
| 268 | + x1 = torch.nn.functional.pad(x1, (1, 0, 1, 0)) |
| 269 | + else: |
| 270 | + x1 = torch.nn.functional.pad(x1, (1, 0, 1, 0, 1, 0)) |
| 271 | + |
| 272 | + if self.resample_do_res: |
| 273 | + res = self.res_conv(x) |
| 274 | + if self.dim == "2d": |
| 275 | + res = torch.nn.functional.pad(res, (1, 0, 1, 0)) |
| 276 | + else: |
| 277 | + res = torch.nn.functional.pad(res, (1, 0, 1, 0, 1, 0)) |
| 278 | + x1 = x1 + res |
| 279 | + |
| 280 | + return x1 |
| 281 | + |
| 282 | + |
| 283 | +class MedNeXtOutBlock(nn.Module): |
| 284 | + """ |
| 285 | + MedNeXtOutBlock class for the output block in the MedNeXt model. |
| 286 | +
|
| 287 | + Args: |
| 288 | + in_channels (int): Number of input channels. |
| 289 | + n_classes (int): Number of output classes. |
| 290 | + dim (str): Dimension of the input. Can be "2d" or "3d". |
| 291 | + """ |
| 292 | + |
| 293 | + def __init__(self, in_channels, n_classes, dim): |
| 294 | + super().__init__() |
| 295 | + |
| 296 | + conv = get_conv_layer(spatial_dim=2 if dim == "2d" else 3, transpose=True) |
| 297 | + self.conv_out = conv(in_channels, n_classes, kernel_size=1) |
| 298 | + |
| 299 | + def forward(self, x): |
| 300 | + """ |
| 301 | + Forward pass of the MedNeXtOutBlock. |
| 302 | +
|
| 303 | + Args: |
| 304 | + x (torch.Tensor): Input tensor. |
| 305 | +
|
| 306 | + Returns: |
| 307 | + torch.Tensor: Output tensor. |
| 308 | + """ |
| 309 | + return self.conv_out(x) |
0 commit comments