|
1 |
| -# MONAI |
| 1 | +<!----- Conversion time: 2.089 seconds. |
| 2 | +
|
| 3 | +
|
| 4 | +Using this Markdown file: |
| 5 | +
|
| 6 | +1. Cut and paste this output into your source file. |
| 7 | +2. See the notes and action items below regarding this conversion run. |
| 8 | +3. Check the rendered output (headings, lists, code blocks, tables) for proper |
| 9 | + formatting and use a linkchecker before you publish this page. |
| 10 | +
|
| 11 | +Conversion notes: |
| 12 | +
|
| 13 | +* Docs to Markdown version 1.0β17 |
| 14 | +* Fri Oct 11 2019 09:47:55 GMT-0700 (PDT) |
| 15 | +* Source doc: https://docs.google.com/a/nvidia.com/open?id=1J5txBS-UBJeUFnFC1ZjydC4jYCB_JKlzPBjkOK76qhU |
| 16 | +-----> |
| 17 | + |
| 18 | + |
| 19 | +**Project MONAI (M**edical** O**pen** N**etwork** **for** AI)** |
| 20 | + |
| 21 | +_AI Toolkit for Healthcare Imaging_ |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | +_This document identifies key concepts of project MONAI at a high level, the goal is to facilitate further technical discussions of requirements,roadmap, feasibility and trade-offs._ \ |
| 26 | + |
| 27 | + |
| 28 | + |
| 29 | + |
| 30 | +1. **Vision** |
| 31 | +* Develop a community of academic, industrial and clinical researchers collaborating and working on a common foundation of standardized tools. |
| 32 | +* Create a state-of-the-art, end-to-end training toolkit for healthcare imaging. |
| 33 | +* Provide academic and industrial researchers with the optimized and standardized way to create and evaluate models |
| 34 | +2. **Targeted users** |
| 35 | +* Primarily focused on the healthcare researchers who develop DL models for medical imaging |
| 36 | +3. **Goals** |
| 37 | +* Deliver domain-specific workflow capabilities |
| 38 | +* Address the end-end “Pain points” when creating medical imaging deep learning workflows. |
| 39 | +* Provide a robust foundation with a performance optimized system software stack that allows researchers to focus on the research and not worry about software development principles. \ |
| 40 | + |
| 41 | +4. **Guiding principles** |
| 42 | +1. Modularity |
| 43 | + * Pythonic -- object oriented components |
| 44 | + * Compositional -- can combine components to create workflows |
| 45 | + * Extensible -- easy to create new components and extend existing components |
| 46 | + * Easy to debug -- loosely coupled, easy to follow code (e.g. in eager or graph mode) |
| 47 | + * Flexible -- interfaces for easy integration of external modules |
| 48 | +2. User friendly |
| 49 | + * Portable -- use components/workflows via Python “import” |
| 50 | + * Run well-known baseline workflows in a few commands |
| 51 | + * Access to the well-known public datasets in a few lines of code |
| 52 | +3. Standardisation |
| 53 | + * Unified/consistent component APIs with documentation specifications |
| 54 | + * Unified/consistent data and model formats, compatible with other existing standards |
| 55 | +4. High quality |
| 56 | + * Consistent coding style - extensive documentation - tutorials - contributors’ guidelines |
| 57 | + * Reproducibility -- e.g. system-specific deterministic training |
| 58 | +5. Future proof |
| 59 | + * Task scalability -- both in datasets and computational resources |
| 60 | + * Support for advanced data structures -- e.g. graphs/structured text documents |
| 61 | +6. Leverage existing high-quality software packages whenever possible |
| 62 | + * E.g. low-level medical image format reader, image preprocessing with external packages |
| 63 | + * Rigorous risk analysis of choice of foundational software dependencies |
| 64 | +7. Compatible with external software |
| 65 | + * E.g. data visualisation, experiments tracking, management, orchestration |
| 66 | +5. **Key capabilities** |
| 67 | + |
| 68 | +<table> |
| 69 | + <tr> |
| 70 | + <td> |
| 71 | +<strong><em>Basic features</em></strong> |
| 72 | + </td> |
| 73 | + <td colspan="2" ><em>Example</em> |
| 74 | + </td> |
| 75 | + <td><em>Notes</em> |
| 76 | + </td> |
| 77 | + </tr> |
| 78 | + <tr> |
| 79 | + <td>Ready-to-use workflows |
| 80 | + </td> |
| 81 | + <td colspan="2" >Volumetric image segmentation |
| 82 | + </td> |
| 83 | + <td>“Bring your own dataset” |
| 84 | + </td> |
| 85 | + </tr> |
| 86 | + <tr> |
| 87 | + <td>Baseline/reference network architectures |
| 88 | + </td> |
| 89 | + <td colspan="2" >Provide an option to use “U-Net” |
| 90 | + </td> |
| 91 | + <td> |
| 92 | + </td> |
| 93 | + </tr> |
| 94 | + <tr> |
| 95 | + <td>Intuitive command-line interfaces |
| 96 | + </td> |
| 97 | + <td colspan="2" > |
| 98 | + </td> |
| 99 | + <td> |
| 100 | + </td> |
| 101 | + </tr> |
| 102 | + <tr> |
| 103 | + <td>Multi-gpu training |
| 104 | + </td> |
| 105 | + <td colspan="2" >Configure the workflow to run data parallel training |
| 106 | + </td> |
| 107 | + <td> |
| 108 | + </td> |
| 109 | + </tr> |
| 110 | +</table> |
| 111 | + |
| 112 | + |
| 113 | + |
| 114 | +<table> |
| 115 | + <tr> |
| 116 | + <td><strong><em>Customisable Python interfaces</em></strong> |
| 117 | + </td> |
| 118 | + <td colspan="2" ><em>Example</em> |
| 119 | + </td> |
| 120 | + <td><em>Notes</em> |
| 121 | + </td> |
| 122 | + </tr> |
| 123 | + <tr> |
| 124 | + <td>Training/validation strategies |
| 125 | + </td> |
| 126 | + <td colspan="2" >Schedule a strategy of alternating between generator and discriminator model training |
| 127 | + </td> |
| 128 | + <td> |
| 129 | + </td> |
| 130 | + </tr> |
| 131 | + <tr> |
| 132 | + <td>Network architectures |
| 133 | + </td> |
| 134 | + <td colspan="2" >Define new networks w/ the recent “Squeeze-and-Excitation” blocks |
| 135 | + </td> |
| 136 | + <td>“Bring your own model” |
| 137 | + </td> |
| 138 | + </tr> |
| 139 | + <tr> |
| 140 | + <td>Data preprocessors |
| 141 | + </td> |
| 142 | + <td colspan="2" >Define a new reader to read training data from a database system |
| 143 | + </td> |
| 144 | + <td> |
| 145 | + </td> |
| 146 | + </tr> |
| 147 | + <tr> |
| 148 | + <td>Adaptive training schedule |
| 149 | + </td> |
| 150 | + <td colspan="2" >Stop training when the loss becomes “NaN” |
| 151 | + </td> |
| 152 | + <td>“Callbacks” |
| 153 | + </td> |
| 154 | + </tr> |
| 155 | + <tr> |
| 156 | + <td>Configuration-driven workflow assembly |
| 157 | + </td> |
| 158 | + <td colspan="2" >Making workflow instances from configuration file |
| 159 | + </td> |
| 160 | + <td>Convenient for managing hyperparameters |
| 161 | + </td> |
| 162 | + </tr> |
| 163 | +</table> |
| 164 | + |
| 165 | + |
| 166 | + |
| 167 | +<table> |
| 168 | + <tr> |
| 169 | + <td><strong><em>Model sharing & transfer learning</em></strong> |
| 170 | + </td> |
| 171 | + <td colspan="2" ><em>Example</em> |
| 172 | + </td> |
| 173 | + <td><em>Notes</em> |
| 174 | + </td> |
| 175 | + </tr> |
| 176 | + <tr> |
| 177 | + <td>Sharing model parameters, hyperparameter configurations |
| 178 | + </td> |
| 179 | + <td colspan="2" >Standardisation of model archiving format |
| 180 | + </td> |
| 181 | + <td> |
| 182 | + </td> |
| 183 | + </tr> |
| 184 | + <tr> |
| 185 | + <td>Model optimisation for deployment |
| 186 | + </td> |
| 187 | + <td colspan="2" > |
| 188 | + </td> |
| 189 | + <td> |
| 190 | + </td> |
| 191 | + </tr> |
| 192 | + <tr> |
| 193 | + <td>Fine-tuning from pre-trained models |
| 194 | + </td> |
| 195 | + <td colspan="2" >Model compression, TensorRT |
| 196 | + </td> |
| 197 | + <td> |
| 198 | + </td> |
| 199 | + </tr> |
| 200 | + <tr> |
| 201 | + <td>Model interpretability |
| 202 | + </td> |
| 203 | + <td colspan="2" >Visualising feature maps of a trained model |
| 204 | + </td> |
| 205 | + <td> |
| 206 | + </td> |
| 207 | + </tr> |
| 208 | + <tr> |
| 209 | + <td>Experiment tracking & management |
| 210 | + </td> |
| 211 | + <td colspan="2" > |
| 212 | + </td> |
| 213 | + <td><a href="https://polyaxon.com/">https://polyaxon.com/</a> |
| 214 | + </td> |
| 215 | + </tr> |
| 216 | +</table> |
| 217 | + |
| 218 | + |
| 219 | + |
| 220 | +<table> |
| 221 | + <tr> |
| 222 | + <td><strong><em>Advanced features</em></strong> |
| 223 | + </td> |
| 224 | + <td colspan="2" ><em>Example</em> |
| 225 | + </td> |
| 226 | + <td><em>Notes</em> |
| 227 | + </td> |
| 228 | + </tr> |
| 229 | + <tr> |
| 230 | + <td>Compatibility with external toolkits |
| 231 | + </td> |
| 232 | + <td colspan="2" >XNAT as data source, ITK as preprocessor |
| 233 | + </td> |
| 234 | + <td> |
| 235 | + </td> |
| 236 | + </tr> |
| 237 | + <tr> |
| 238 | + <td>Advanced learning strategies |
| 239 | + </td> |
| 240 | + <td colspan="2" >Semi-supervised, active learning |
| 241 | + </td> |
| 242 | + <td> |
| 243 | + </td> |
| 244 | + </tr> |
| 245 | + <tr> |
| 246 | + <td>High performance preprocessors |
| 247 | + </td> |
| 248 | + <td colspan="2" >Smart caching, multi-process |
| 249 | + </td> |
| 250 | + <td> |
| 251 | + </td> |
| 252 | + </tr> |
| 253 | + <tr> |
| 254 | + <td>Multi-node distributed training |
| 255 | + </td> |
| 256 | + <td colspan="2" > |
| 257 | + </td> |
| 258 | + <td> |
| 259 | + </td> |
| 260 | + </tr> |
| 261 | +</table> |
| 262 | + |
| 263 | + |
| 264 | + |
| 265 | + |
| 266 | +* Project licensing: Apache License, Version 2.0 |
| 267 | + |
| 268 | +<!-- Docs to Markdown version 1.0β17 --> |
0 commit comments