@@ -25,16 +25,16 @@ def test_1d(self):
25
25
[
26
26
[
27
27
[
28
- 0.56658804 ,
29
- 0.69108766 ,
30
- 0.79392236 ,
31
- 0.86594427 ,
32
- 0.90267116 ,
33
- 0.9026711 ,
34
- 0.8659443 ,
35
- 0.7939224 ,
36
- 0.6910876 ,
37
- 0.56658804 ,
28
+ 0.5654129 ,
29
+ 0.68915915 ,
30
+ 0.79146194 ,
31
+ 0.8631974 ,
32
+ 0.8998163 ,
33
+ 0.8998163 ,
34
+ 0.8631973 ,
35
+ 0.79146194 ,
36
+ 0.6891592 ,
37
+ 0.5654129 ,
38
38
]
39
39
]
40
40
]
@@ -49,9 +49,9 @@ def test_2d(self):
49
49
[
50
50
[
51
51
[
52
- [0.13380532 , 0.14087981 , 0.13380532 ],
53
- [0.14087981 , 0.14832835 , 0.14087981 ],
54
- [0.13380532 , 0.14087981 , 0.13380532 ],
52
+ [0.13239081 , 0.13932934 , 0.13239081 ],
53
+ [0.13932936 , 0.14663152 , 0.13932936 ],
54
+ [0.13239081 , 0.13932934 , 0.13239081 ],
55
55
]
56
56
]
57
57
]
@@ -65,29 +65,30 @@ def test_2d(self):
65
65
def test_3d (self ):
66
66
a = torch .ones (1 , 1 , 4 , 3 , 4 )
67
67
g = GaussianFilter (3 , 3 , 3 ).to (torch .device ("cpu:0" ))
68
+
68
69
expected = np .array (
69
70
[
70
71
[
71
72
[
72
73
[
73
- [0.07294822 , 0.08033235 , 0.08033235 , 0.07294822 ],
74
- [0.07680509 , 0.08457965 , 0.08457965 , 0.07680509 ],
75
- [0.07294822 , 0.08033235 , 0.08033235 , 0.07294822 ],
74
+ [0.07189433 , 0.07911152 , 0.07911152 , 0.07189433 ],
75
+ [0.07566228 , 0.08325771 , 0.08325771 , 0.07566228 ],
76
+ [0.07189433 , 0.07911152 , 0.07911152 , 0.07189433 ],
76
77
],
77
78
[
78
- [0.08033235 , 0.08846395 , 0.08846395 , 0.08033235 ],
79
- [0.08457965 , 0.09314119 , 0.09314119 , 0.08457966 ],
80
- [0.08033235 , 0.08846396 , 0.08846396 , 0.08033236 ],
79
+ [0.07911152 , 0.08705322 , 0.08705322 , 0.07911152 ],
80
+ [0.08325771 , 0.09161563 , 0.09161563 , 0.08325771 ],
81
+ [0.07911152 , 0.08705322 , 0.08705322 , 0.07911152 ],
81
82
],
82
83
[
83
- [0.08033235 , 0.08846395 , 0.08846395 , 0.08033235 ],
84
- [0.08457965 , 0.09314119 , 0.09314119 , 0.08457966 ],
85
- [0.08033235 , 0.08846396 , 0.08846396 , 0.08033236 ],
84
+ [0.07911152 , 0.08705322 , 0.08705322 , 0.07911152 ],
85
+ [0.08325771 , 0.09161563 , 0.09161563 , 0.08325771 ],
86
+ [0.07911152 , 0.08705322 , 0.08705322 , 0.07911152 ],
86
87
],
87
88
[
88
- [0.07294822 , 0.08033235 , 0.08033235 , 0.07294822 ],
89
- [0.07680509 , 0.08457965 , 0.08457965 , 0.07680509 ],
90
- [0.07294822 , 0.08033235 , 0.08033235 , 0.07294822 ],
89
+ [0.07189433 , 0.07911152 , 0.07911152 , 0.07189433 ],
90
+ [0.07566228 , 0.08325771 , 0.08325771 , 0.07566228 ],
91
+ [0.07189433 , 0.07911152 , 0.07911152 , 0.07189433 ],
91
92
],
92
93
]
93
94
]
@@ -98,14 +99,15 @@ def test_3d(self):
98
99
def test_3d_sigmas (self ):
99
100
a = torch .ones (1 , 1 , 4 , 3 , 2 )
100
101
g = GaussianFilter (3 , [3 , 2 , 1 ], 3 ).to (torch .device ("cpu:0" ))
102
+
101
103
expected = np .array (
102
104
[
103
105
[
104
106
[
105
- [[0.1422854 , 0.1422854 ], [0.15806103 , 0.15806103 ], [0.1422854 , 0.1422854 ]],
106
- [[0.15668818 , 0.15668817 ], [0.17406069 , 0.17406069 ], [0.15668818 , 0.15668817 ]],
107
- [[0.15668818 , 0.15668817 ], [0.17406069 , 0.17406069 ], [0.15668818 , 0.15668817 ]],
108
- [[0.1422854 , 0.1422854 ], [0.15806103 , 0.15806103 ], [0.1422854 , 0.1422854 ]],
107
+ [[0.13690521 , 0.13690521 ], [0.15181276 , 0.15181276 ], [0.13690521 , 0.13690521 ]],
108
+ [[0.1506486 , 0.15064861 ], [0.16705267 , 0.16705267 ], [0.1506486 , 0.15064861 ]],
109
+ [[0.1506486 , 0.15064861 ], [0.16705267 , 0.16705267 ], [0.1506486 , 0.15064861 ]],
110
+ [[0.13690521 , 0.13690521 ], [0.15181276 , 0.15181276 ], [0.13690521 , 0.13690521 ]],
109
111
]
110
112
]
111
113
]
0 commit comments