@@ -19,8 +19,9 @@ using RuntimeGeneratedFunctions
19
19
using Statistics
20
20
using ArrayInterface
21
21
import Optim
22
- using Symbolics: wrap, unwrap, arguments, operation
23
- using SymbolicUtils
22
+ using Symbolics: wrap, unwrap, arguments, operation, symtype, @arrayop , Arr
23
+ using SymbolicUtils. Code
24
+ using SymbolicUtils: Prewalk, Postwalk, Chain
24
25
using AdvancedHMC, LogDensityProblems, LinearAlgebra, Functors, MCMCChains
25
26
using MonteCarloMeasurements: Particles
26
27
using ModelingToolkit: value, nameof, toexpr, build_expr, expand_derivatives, Interval,
@@ -32,7 +33,9 @@ using SciMLBase: @add_kwonly, parameterless_type
32
33
using UnPack: @unpack
33
34
import ChainRulesCore, Lux, ComponentArrays
34
35
using Lux: FromFluxAdaptor, recursive_eltype
35
- using ChainRulesCore: @non_differentiable
36
+ using ChainRulesCore: @non_differentiable , @ignore_derivatives
37
+ using PDEBase: AbstractVarEqMapping, VariableMap, cardinalize_eqs!, get_depvars,
38
+ get_indvars, differential_order
36
39
37
40
RuntimeGeneratedFunctions. init (@__MODULE__ )
38
41
@@ -41,13 +44,15 @@ abstract type AbstractPINN end
41
44
abstract type AbstractTrainingStrategy end
42
45
43
46
include (" pinn_types.jl" )
47
+ include (" eq_data.jl" )
44
48
include (" symbolic_utilities.jl" )
45
49
include (" training_strategies.jl" )
46
50
include (" adaptive_losses.jl" )
47
51
include (" ode_solve.jl" )
48
52
# include("rode_solve.jl")
49
53
include (" dae_solve.jl" )
50
54
include (" transform_inf_integral.jl" )
55
+ include (" loss_function_generation.jl" )
51
56
include (" discretize.jl" )
52
57
include (" neural_adapter.jl" )
53
58
include (" advancedHMC_MCMC.jl" )
0 commit comments