diff --git a/project_euler/problem_122/__init__.py b/project_euler/problem_122/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_122/sol1.py b/project_euler/problem_122/sol1.py new file mode 100644 index 000000000000..cd8b1e67708c --- /dev/null +++ b/project_euler/problem_122/sol1.py @@ -0,0 +1,89 @@ +""" +Project Euler Problem 122: https://projecteuler.net/problem=122 + +Efficient Exponentiation + +The most naive way of computing n^15 requires fourteen multiplications: + + n x n x ... x n = n^15. + +But using a "binary" method you can compute it in six multiplications: + + n x n = n^2 + n^2 x n^2 = n^4 + n^4 x n^4 = n^8 + n^8 x n^4 = n^12 + n^12 x n^2 = n^14 + n^14 x n = n^15 + +However it is yet possible to compute it in only five multiplications: + + n x n = n^2 + n^2 x n = n^3 + n^3 x n^3 = n^6 + n^6 x n^6 = n^12 + n^12 x n^3 = n^15 + +We shall define m(k) to be the minimum number of multiplications to compute n^k; +for example m(15) = 5. + +Find sum_{k = 1}^200 m(k). + +It uses the fact that for rather small n, applicable for this problem, the solution +for each number can be formed by increasing the largest element. + +References: +- https://en.wikipedia.org/wiki/Addition_chain +""" + + +def solve(nums: list[int], goal: int, depth: int) -> bool: + """ + Checks if nums can have a sum equal to goal, given that length of nums does + not exceed depth. + + >>> solve([1], 2, 2) + True + >>> solve([1], 2, 0) + False + """ + if len(nums) > depth: + return False + for el in nums: + if el + nums[-1] == goal: + return True + nums.append(el + nums[-1]) + if solve(nums=nums, goal=goal, depth=depth): + return True + del nums[-1] + return False + + +def solution(n: int = 200) -> int: + """ + Calculates sum of smallest number of multiplactions for each number up to + and including n. + + >>> solution(1) + 0 + >>> solution(2) + 1 + >>> solution(14) + 45 + >>> solution(15) + 50 + """ + total = 0 + for i in range(2, n + 1): + max_length = 0 + while True: + nums = [1] + max_length += 1 + if solve(nums=nums, goal=i, depth=max_length): + break + total += max_length + return total + + +if __name__ == "__main__": + print(f"{solution() = }")