Skip to content

Commit b4062be

Browse files
authored
Refactor 0-1 Knapsack Implementation (#236)
* ref: improve code readability, maintainabiity and edge case handling - Correctly throws an error if the length of the `weights` and `values` arrays are not equal - Use camelCase consistently through the codebase - Add type annotations to the function params and return types - Adding comments within the loops to clarify the logic - Ensure the function handles edge cases appropriately, such as when capacity is 0 or when weights and values arrays are empty * chore(docs): rewrite function docstring * style: format code using prettier
1 parent c2d7aa6 commit b4062be

File tree

1 file changed

+34
-36
lines changed

1 file changed

+34
-36
lines changed

dynamic_programming/knapsack.ts

+34-36
Original file line numberDiff line numberDiff line change
@@ -1,56 +1,54 @@
11
/**
2-
* @function knapsack
3-
* @description Given weights and values of n (numberOfItems) items, put these items in a knapsack of capacity to get the maximum total value in the knapsack. In other words, given two integer arrays values[0..n-1] and weights[0..n-1] which represent values and weights associated with n items respectively. Also given an integer capacity which represents knapsack capacity, find out the maximum value subset of values[] such that sum of the weights of this subset is smaller than or equal to capacity. You cannot break an item, either pick the complete item or don’t pick it (0-1 property).
4-
* @Complexity_Analysis
5-
* Space complexity - O(1)
6-
* Time complexity (independent of input) : O(numberOfItems * capacity)
7-
*
8-
* @return maximum value subset of values[] such that sum of the weights of this subset is smaller than or equal to capacity.
9-
* @see [Knapsack](https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/)
10-
* @example knapsack(3, 8, [3, 4, 5], [30, 50, 60]) = 90
2+
* Solves the 0-1 Knapsack Problem.
3+
* @param capacity Knapsack capacity
4+
* @param weights Array of item weights
5+
* @param values Array of item values
6+
* @returns Maximum value subset such that sum of the weights of this subset is smaller than or equal to capacity
7+
* @throws If weights and values arrays have different lengths
8+
* @see [Knapsack](https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/)
9+
* @example knapsack(3, [3, 4, 5], [30, 50, 60]) // Output: 90
1110
*/
11+
1212
export const knapsack = (
1313
capacity: number,
1414
weights: number[],
1515
values: number[]
16-
) => {
17-
if (weights.length != values.length) {
16+
): number => {
17+
if (weights.length !== values.length) {
1818
throw new Error(
19-
'weights and values arrays should have same number of elements'
19+
'Weights and values arrays should have the same number of elements'
2020
)
2121
}
2222

23-
const numberOfItems = weights.length
23+
const numberOfItems: number = weights.length
2424

25-
// Declaring a data structure to store calculated states/values
25+
// Initializing a 2D array to store calculated states/values
2626
const dp: number[][] = new Array(numberOfItems + 1)
27-
28-
for (let i = 0; i < dp.length; i++) {
29-
// Placing an array at each index of dp to make it a 2d matrix
30-
dp[i] = new Array(capacity + 1)
31-
}
27+
.fill(0)
28+
.map(() => new Array(capacity + 1).fill(0))
3229

3330
// Loop traversing each state of dp
34-
for (let i = 0; i < numberOfItems; i++) {
35-
for (let j = 0; j <= capacity; j++) {
36-
if (i == 0) {
37-
if (j >= weights[i]) {
38-
// grab the first item if it's weight is less than remaining weight (j)
39-
dp[i][j] = values[i]
40-
} else {
41-
// if weight[i] is more than remaining weight (j) leave it
42-
dp[i][j] = 0
43-
}
44-
} else if (j < weights[i]) {
45-
// if weight of current item (weights[i]) is more than remaining weight (j), leave the current item and just carry on previous items
46-
dp[i][j] = dp[i - 1][j]
31+
for (let itemIndex = 1; itemIndex <= numberOfItems; itemIndex++) {
32+
const weight = weights[itemIndex - 1]
33+
const value = values[itemIndex - 1]
34+
for (
35+
let currentCapacity = 1;
36+
currentCapacity <= capacity;
37+
currentCapacity++
38+
) {
39+
if (weight <= currentCapacity) {
40+
// Select the maximum value of including the current item or excluding it
41+
dp[itemIndex][currentCapacity] = Math.max(
42+
value + dp[itemIndex - 1][currentCapacity - weight],
43+
dp[itemIndex - 1][currentCapacity]
44+
)
4745
} else {
48-
// select the maximum of (if current weight is collected thus adding it's value) and (if current weight is not collected thus not adding it's value)
49-
dp[i][j] = Math.max(dp[i - 1][j - weights[i]] + values[i], dp[i - 1][j])
46+
// If the current item's weight exceeds the current capacity, exclude it
47+
dp[itemIndex][currentCapacity] = dp[itemIndex - 1][currentCapacity]
5048
}
5149
}
5250
}
5351

54-
// Return the final maximized value at last position of dp matrix
55-
return dp[numberOfItems - 1][capacity]
52+
// Return the final maximized value at the last position of the dp matrix
53+
return dp[numberOfItems][capacity]
5654
}

0 commit comments

Comments
 (0)