@@ -621,6 +621,13 @@ const UnivariateAssumeDemoModels = Union{
621
621
function posterior_mean (model:: UnivariateAssumeDemoModels )
622
622
return (s= 49 / 24 , m= 7 / 6 )
623
623
end
624
+ function likelihood_optima (:: DynamicPPL.TestUtils.UnivariateAssumeDemoModels )
625
+ return (s= 1 / 16 , m= 7 / 4 )
626
+ end
627
+ function posterior_optima (:: DynamicPPL.TestUtils.UnivariateAssumeDemoModels )
628
+ # TODO : Figure out exact for `s`.
629
+ return (s= 0.907407 , m= 7 / 6 )
630
+ end
624
631
function Random. rand (
625
632
rng:: Random.AbstractRNG , :: Type{NamedTuple} , model:: UnivariateAssumeDemoModels
626
633
)
@@ -654,6 +661,31 @@ function posterior_mean(model::MultivariateAssumeDemoModels)
654
661
655
662
return vals
656
663
end
664
+ function likelihood_optima (model:: DynamicPPL.TestUtils.MultivariateAssumeDemoModels )
665
+ # Get some containers to fill.
666
+ vals = Random. rand (model)
667
+
668
+ # NOTE: These are "as close to zero as we can get".
669
+ vals. s[1 ] = 1e-32
670
+ vals. s[2 ] = 1e-32
671
+
672
+ vals. m[1 ] = 1.5
673
+ vals. m[2 ] = 2.0
674
+
675
+ return vals
676
+ end
677
+ function posterior_optima (model:: DynamicPPL.TestUtils.MultivariateAssumeDemoModels )
678
+ # Get some containers to fill.
679
+ vals = Random. rand (model)
680
+
681
+ # TODO : Figure out exact for `s[1]`.
682
+ vals. s[1 ] = 0.890625
683
+ vals. s[2 ] = 1
684
+ vals. m[1 ] = 3 / 4
685
+ vals. m[2 ] = 1
686
+
687
+ return vals
688
+ end
657
689
function Random. rand (
658
690
rng:: Random.AbstractRNG , :: Type{NamedTuple} , model:: MultivariateAssumeDemoModels
659
691
)
@@ -684,6 +716,31 @@ function posterior_mean(model::MatrixvariateAssumeDemoModels)
684
716
685
717
return vals
686
718
end
719
+ function likelihood_optima (model:: DynamicPPL.TestUtils.MatrixvariateAssumeDemoModels )
720
+ # Get some containers to fill.
721
+ vals = Random. rand (model)
722
+
723
+ # NOTE: These are "as close to zero as we can get".
724
+ vals. s[1 , 1 ] = 1e-32
725
+ vals. s[1 , 2 ] = 1e-32
726
+
727
+ vals. m[1 ] = 1.5
728
+ vals. m[2 ] = 2.0
729
+
730
+ return vals
731
+ end
732
+ function posterior_optima (model:: DynamicPPL.TestUtils.MatrixvariateAssumeDemoModels )
733
+ # Get some containers to fill.
734
+ vals = Random. rand (model)
735
+
736
+ # TODO : Figure out exact for `s[1]`.
737
+ vals. s[1 , 1 ] = 0.890625
738
+ vals. s[1 , 2 ] = 1
739
+ vals. m[1 ] = 3 / 4
740
+ vals. m[2 ] = 1
741
+
742
+ return vals
743
+ end
687
744
function Base. rand (
688
745
rng:: Random.AbstractRNG , :: Type{NamedTuple} , model:: MatrixvariateAssumeDemoModels
689
746
)
0 commit comments