|
| 1 | +// import visualization libraries { |
| 2 | +const { |
| 3 | + Array2DTracer, |
| 4 | + Layout, |
| 5 | + LogTracer, |
| 6 | + Tracer, |
| 7 | + VerticalLayout, |
| 8 | + ScatterTracer, |
| 9 | + Randomize, |
| 10 | +} = require('algorithm-visualizer') |
| 11 | +// } |
| 12 | + |
| 13 | +// define helper functions { |
| 14 | +const shuffle = a => { |
| 15 | + const array = a.slice(0) |
| 16 | + const copy = [] |
| 17 | + let n = array.length |
| 18 | + |
| 19 | + while (n) { |
| 20 | + let i = Math.floor(Math.random() * n--) |
| 21 | + copy.push(array.splice(i, 1)[0]) |
| 22 | + } |
| 23 | + |
| 24 | + return copy |
| 25 | +} |
| 26 | + |
| 27 | +const sum = (x, y) => x + y |
| 28 | +const chooseRandomCenters = (data, k) => shuffle(data).slice(0, k) |
| 29 | +const pointify = ([x, y]) => `(${x}, ${y})` |
| 30 | +const arrayify = a => a.map(pointify) |
| 31 | +const stringify = a => arrayify(a).join(', ') |
| 32 | +const distance = ([x1, y1], [x2, y2]) => sum(Math.pow(x1 - x2, 2), |
| 33 | + Math.pow(y1 - y2, 2)) |
| 34 | +const col = (a, i) => a.map(p => p[i]) |
| 35 | +const mean = a => a.reduce(sum, 0) / a.length |
| 36 | +const centerOfCluster = cluster => [ |
| 37 | + mean(col(cluster, 0)), |
| 38 | + mean(col(cluster, 1)), |
| 39 | +] |
| 40 | +const reCalculateCenters = clusters => clusters.map(centerOfCluster) |
| 41 | +const areCentersEqual = (c1, c2) => !!c1 && !!c2 && !(c1 < c2 || c2 < c1) |
| 42 | + |
| 43 | +function cluster(data, centers) { |
| 44 | + const clusters = centers.map(() => []) |
| 45 | + |
| 46 | + for (let i = 0; i < data.length; i++) { |
| 47 | + const point = data[i] |
| 48 | + let minDistance = Infinity |
| 49 | + let minDistanceIndex = -1 |
| 50 | + |
| 51 | + for (let j = 0; j < centers.length; j++) { |
| 52 | + const d = distance(point, centers[j]) |
| 53 | + |
| 54 | + if (d < minDistance) { |
| 55 | + minDistance = d |
| 56 | + minDistanceIndex = j |
| 57 | + } |
| 58 | + } |
| 59 | + |
| 60 | + if (!clusters[minDistanceIndex] instanceof Array) { |
| 61 | + clusters[minDistanceIndex] = [] |
| 62 | + } |
| 63 | + |
| 64 | + clusters[minDistanceIndex].push(point) |
| 65 | + } |
| 66 | + |
| 67 | + return clusters |
| 68 | +} |
| 69 | + |
| 70 | +// } |
| 71 | + |
| 72 | +// define tracer variables { |
| 73 | +const array2dTracer = new Array2DTracer('Grid') |
| 74 | +const logTracer = new LogTracer('Console') |
| 75 | +const scatterTracer = new ScatterTracer('Scatter') |
| 76 | +// } |
| 77 | + |
| 78 | +// define input variables |
| 79 | +const unClusteredData = Randomize.Array2D( |
| 80 | + { N: Randomize.Integer({ min: 10, max: 25 }) }) |
| 81 | +const k = Randomize.Integer( |
| 82 | + { min: 2, max: Math.floor(unClusteredData.length / 5) }) |
| 83 | + |
| 84 | +const recenterAndCluster = (originalClusters) => { |
| 85 | + const centers = reCalculateCenters(originalClusters) |
| 86 | + const clusters = cluster(unClusteredData, centers) |
| 87 | + return { centers, clusters } |
| 88 | +} |
| 89 | + |
| 90 | +const improve = (loops, clusters, centers) => { |
| 91 | + const allowImprove = () => loops < 1000 |
| 92 | + |
| 93 | + if (!allowImprove()) { |
| 94 | + return { clusters, centers } |
| 95 | + } |
| 96 | + |
| 97 | + loops++ |
| 98 | + |
| 99 | + const ret = recenterAndCluster(clusters) |
| 100 | + |
| 101 | + // trace { |
| 102 | + array2dTracer.set(clusters.map(c => c.map(pointify))) |
| 103 | + scatterTracer.set([unClusteredData, ...ret.clusters, ret.centers]) |
| 104 | + |
| 105 | + logTracer.println('') |
| 106 | + logTracer.println(`Iteration #${loops} Result: `) |
| 107 | + logTracer.println(`\tClusters:`) |
| 108 | + logTracer.println( |
| 109 | + `\t\t${ret.clusters.map(c => stringify(c)).join(`\n\t\t`)}`) |
| 110 | + logTracer.println(`\tCenters:`) |
| 111 | + logTracer.println(`\t\t${stringify(ret.centers)}`) |
| 112 | + logTracer.println('') |
| 113 | + |
| 114 | + Tracer.delay() |
| 115 | + // } |
| 116 | + |
| 117 | + if (!allowImprove() || areCentersEqual(centers, ret.centers)) { |
| 118 | + return ret |
| 119 | + } |
| 120 | + |
| 121 | + return improve(loops, ret.clusters, ret.centers) |
| 122 | +} |
| 123 | + |
| 124 | +(function main() { |
| 125 | + // visualize { |
| 126 | + Layout.setRoot(new VerticalLayout([scatterTracer, array2dTracer, logTracer])) |
| 127 | + |
| 128 | + logTracer.println(`Un-clustered data = ${stringify(unClusteredData)}`) |
| 129 | + array2dTracer.set([unClusteredData.map(pointify)]) |
| 130 | + scatterTracer.set([unClusteredData]) |
| 131 | + |
| 132 | + Tracer.delay() |
| 133 | + // } |
| 134 | + |
| 135 | + // Start with random centers |
| 136 | + const centers = chooseRandomCenters(unClusteredData, k) |
| 137 | + |
| 138 | + // trace { |
| 139 | + logTracer.println( |
| 140 | + `Initial random selected centers = ${stringify(centers)}`) |
| 141 | + scatterTracer.set([unClusteredData, ...[[], []], centers]) |
| 142 | + |
| 143 | + Tracer.delay() |
| 144 | + // } |
| 145 | + |
| 146 | + // Cluster to the random centers |
| 147 | + const clusters = cluster(unClusteredData, centers) |
| 148 | + |
| 149 | + // trace { |
| 150 | + logTracer.println( |
| 151 | + `Initial clusters = \n\t${clusters.map(stringify).join('\n\t')}`) |
| 152 | + array2dTracer.set(clusters.map(c => c.map(pointify))) |
| 153 | + scatterTracer.set([unClusteredData, ...clusters, centers]) |
| 154 | + |
| 155 | + Tracer.delay() |
| 156 | + // } |
| 157 | + |
| 158 | + // start iterations here |
| 159 | + const ret = improve(0, clusters, centers) |
| 160 | + |
| 161 | + // trace { |
| 162 | + Tracer.delay() |
| 163 | + |
| 164 | + logTracer.println( |
| 165 | + `Final clustered data = \n\t${ret.clusters.map(stringify) |
| 166 | + .join('\n\t')}`) |
| 167 | + logTracer.println(`Best centers = ${stringify(ret.centers)}`) |
| 168 | + array2dTracer.set(ret.clusters.map(c => c.map(pointify))) |
| 169 | + scatterTracer.set([unClusteredData, ...ret.clusters, ret.centers]) |
| 170 | + Tracer.delay() |
| 171 | + // } |
| 172 | +})() |
0 commit comments