forked from ouening/OD_dataset_conversion_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo_augument.py
228 lines (188 loc) · 8.81 KB
/
yolo_augument.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import xml.etree.ElementTree as ET
import pickle
import os
from os import getcwd
import numpy as np
from PIL import Image
import shutil
import matplotlib.pyplot as plt
from tqdm import tqdm
import imgaug as ia
from imgaug import augmenters as iaa
import argparse
ia.seed(1)
def yolo_to_voc_format(x_center, y_center, width, height, img_width, img_height):
'''将yolo格式转换为voc格式,注意输入的x_center, y_center, width, height是str类型'''
center_x = round(float(str(x_center).strip()) * img_width)
center_y = round(float(str(y_center).strip()) * img_height)
bbox_width = round(float(str(width).strip()) * img_width)
bbox_height = round(float(str(height).strip()) * img_height)
xmin = int(center_x - bbox_width / 2 )
ymin = int(center_y - bbox_height / 2)
xmax = int(center_x + bbox_width / 2)
ymax = int(center_y + bbox_height / 2)
return xmin,ymin,xmax,ymax
def voc_to_yolo_format(xmin, ymin, xmax, ymax, img_width, img_height):
'''将voc格式转换为yolo格式'''
dw = 1./(img_width) # 宽度缩放比例, size[0]为图像宽度width
dh = 1./(img_height)
x = (xmin + xmax)/2.0 - 1
y = (ymin + ymax)/2.0 - 1
w = xmax - xmin
h = ymax - ymin
x_center = x*dw
width = w*dw
y_center = y*dh
height = h*dh
return x_center, y_center, width, height
def read_yolo_annotation(img_root, label_root, image_id):
'''root:一般是labels, txt文件, <object-class> <x_center> <y_center> <width> <height>
image_id是包含.txt后缀的文件名
return:
[xmin, ymin, xmax, ymax, label]
'''
img_width, img_height = Image.open(os.path.join(img_root, image_id[:-4] + ext)).size
annos = [x for x in open(os.path.join(label_root, image_id)).readlines()]
bndboxlist = []
for anno in annos: # 找到root节点下的所有country节点
lb, x_center, y_center, width, height = anno.split(' ') # 注意得到的str类型
xmin,ymin,xmax,ymax = yolo_to_voc_format(x_center, y_center, width, height, img_width, img_height)
# print(xmin,ymin,xmax,ymax)
bndboxlist.append([xmin, ymin, xmax, ymax, int(lb)])
# print(bndboxlist)
return bndboxlist
def change_yolo_annotation(img_root, label_root, image_id, new_target, saveroot, id):
'''保存新的yolo标注
img_root: 原数据集图像路径
label_root: 原数据标注文件路径
image_id:文件名,带.txt后缀
new_target: new_bndbox_list:[[x1,y1,x2,y2,label],...[],[]]
saveroot: 扩增后标注文件保存路径
id: 扩增后保存标注文件名
'''
img_width, img_height = Image.open(os.path.join(img_root, image_id[:-4] + ext)).size
new_annos = []
for anno in new_target:
xmin, ymin, xmax, ymax, label = anno
x_center, y_center, width, height = voc_to_yolo_format(xmin, ymin, xmax, ymax, img_width, img_height)
label = str(label)
x_center = str(x_center)
y_center = str(y_center)
width = str(width)
height = str(height)+'\n'
new_annos.append(' '.join((label,x_center,y_center, width, height)))
# 存储新标注
with open(os.path.join(saveroot, str("%d" % int(id)) + '.txt'),'w') as f:
f.writelines(new_annos)
def mkdir(path):
# 去除首位空格
path = path.strip()
# 去除尾部 \ 符号
path = path.rstrip("\\")
# 判断路径是否存在
# 存在 True
# 不存在 False
isExists = os.path.exists(path)
# 判断结果
if not isExists:
# 如果不存在则创建目录
# 创建目录操作函数
os.makedirs(path)
print(path + ' 创建成功')
return True
else:
# 如果目录存在则不创建,并提示目录已存在
print(path + ' 目录已存在')
return False
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--yolo-root', type=str, required=True,
help='YOLO格式数据集根目录,该目录下必须包含images和labels这两个文件夹')
parser.add_argument('--aug-dir',type=str, default='YOLOAugumented',
help='数据增强后保存的路径,默认在voc-root路径下创建一个文件夹YOLOAugumented进行保存')
parser.add_argument('--aug_num',type=int, default=5,
help='每张图片进行扩增的次数')
parser.add_argument('--ext', type=str, default='.png', help='图像后缀,默认为.png')
opt = parser.parse_args()
ext = opt.ext
IMG_DIR = os.path.join(opt.yolo_root, "images")
LABEL_DIR = os.path.join(opt.yolo_root, "labels")
AUGUMENT = os.path.join(opt.yolo_root, opt.aug_dir)
if not os.path.exists(AUGUMENT):
os.mkdir(AUGUMENT)
AUG_IMG_DIR = os.path.join(AUGUMENT, "images") # 存储增强后的影像文件夹路径
try:
shutil.rmtree(AUG_IMG_DIR)
except FileNotFoundError as e:
a = 1
mkdir(AUG_IMG_DIR)
AUG_LABEL_DIR = os.path.join(AUGUMENT, "labels") # 存储增强后的XML文件夹路径
try:
shutil.rmtree(AUG_LABEL_DIR)
except FileNotFoundError as e:
a = 1
mkdir(AUG_LABEL_DIR)
AUGLOOP = opt.aug_num # 每张影像增强的数量
boxes_img_aug_list = []
new_bndbox = []
new_bndbox_list = []
# 影像增强
seq = iaa.Sequential([
iaa.Flipud(0.5), # vertically flip 20% of all images
iaa.Fliplr(0.5), # 镜像
iaa.Multiply((1.2, 1.5)), # change brightness, doesn't affect BBs
iaa.GaussianBlur(sigma=(0, 3.0)), # iaa.GaussianBlur(0.5),
iaa.Affine(
translate_px={"x": 15, "y": 15},
scale=(0.8, 0.95),
rotate=(-30, 30)
) # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs
])
number = 1
for root, sub_folders, files in os.walk(LABEL_DIR):
for name in tqdm(files):
# [xmin, ymin, xmax, ymax, int(lb)]
bndbox = read_yolo_annotation(IMG_DIR, LABEL_DIR, name) # 读取yolo标注文件,name是包含.txt后缀的文件名,注意:## 返回voc格式标注框 ##
shutil.copy(os.path.join(LABEL_DIR, name), AUG_LABEL_DIR) # 复制标注文件
shutil.copy(os.path.join(IMG_DIR, name[:-4] + ext), AUG_IMG_DIR) # 复制图像
for epoch in range(AUGLOOP):
seq_det = seq.to_deterministic() # 保持坐标和图像同步改变,而不是随机
# 读取图片
img = Image.open(os.path.join(IMG_DIR, name[:-4] + ext))
# sp = img.size
img = np.asarray(img)
# bndbox 坐标增强
for i in range(len(bndbox)):
bbs = ia.BoundingBoxesOnImage([
ia.BoundingBox(x1=bndbox[i][0], y1=bndbox[i][1], x2=bndbox[i][2], y2=bndbox[i][3]),
], shape=img.shape)
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]
boxes_img_aug_list.append(bbs_aug)
# new_bndbox_list:[[x1,y1,x2,y2],...[],[]]
n_x1 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x1)))
n_y1 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y1)))
n_x2 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x2)))
n_y2 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y2)))
if n_x1 == 1 and n_x1 == n_x2:
n_x2 += 1
if n_y1 == 1 and n_y2 == n_y1:
n_y2 += 1
if n_x1 >= n_x2 or n_y1 >= n_y2:
print('error', name)
new_bndbox_list.append([n_x1, n_y1, n_x2, n_y2, bndbox[i][4]]) # 注意保存标签
# 存储变化后的图片
image_aug = seq_det.augment_images([img])[0]
path = os.path.join(AUG_IMG_DIR,
str("%d" % (len(files) + number)) + ext)
# image_auged = bbs.draw_on_image(image_aug, size=0)
Image.fromarray(image_aug).save(path)
# 存储变化后的yolo标注文件
change_yolo_annotation(img_root=IMG_DIR,
label_root=LABEL_DIR,
image_id=name, # 带后缀
new_target=new_bndbox_list,
saveroot=AUG_LABEL_DIR,
id=len(files) + number)
# print(str("%d" % (len(files) + number)) + '.png')
number = number + 1
new_bndbox_list = []