-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathafifo.v
805 lines (705 loc) · 18.6 KB
/
afifo.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
////////////////////////////////////////////////////////////////////////////////
//
// Filename: rtl/afifo.v
// {{{
// Project: SD-Card controller
//
// Purpose: A basic asynchronous FIFO.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2016-2025, Gisselquist Technology, LLC
// {{{
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
// }}}
// License: GPL, v3, as defined and found on www.gnu.org,
// {{{
// http://www.gnu.org/licenses/gpl.html
//
////////////////////////////////////////////////////////////////////////////////
//
`timescale 1ns / 1ps
`default_nettype none
// }}}
module afifo #(
// {{{
// LGFIFO is the log based-two of the number of entries
// in the FIFO, log_2(fifo size)
parameter LGFIFO = 3,
//
// WIDTH is the number of data bits in each entry
parameter WIDTH = 16,
//
// NFF is the number of flip flops used to cross clock domains.
// 2 is a minimum. Some applications appreciate the better
parameter NFF = 2,
//
// This core can either write on the positive edge of the clock
// or the negative edge. Set WRITE_ON_POSEDGE (the default)
// to write on the positive edge of the clock.
parameter [0:0] WRITE_ON_POSEDGE = 1'b1,
//
// Many logic elements can read from memory asynchronously.
// This burdens any following logic. By setting
// OPT_REGISTER_READS, we force all reads to be synchronous and
// not burdened by any logic. You can spare a clock of latency
// by clearing this register.
parameter [0:0] OPT_REGISTER_READS = 1'b1
`ifdef FORMAL
// F_OPT_DATA_STB
// {{{
// In the formal proof, F_OPT_DATA_STB includes a series of
// assumptions associated with a data strobe I/O pin--things
// like a discontinuous clock--just to make sure the core still
// works in those circumstances
, parameter [0:0] F_OPT_DATA_STB = 1'b1
// }}}
`endif
// }}}
) (
// {{{
//
// The (incoming) write data interface
input wire i_wclk, i_wr_reset_n, i_wr,
input wire [WIDTH-1:0] i_wr_data,
output reg o_wr_full,
//
// The (incoming) write data interface
input wire i_rclk, i_rd_reset_n, i_rd,
output reg [WIDTH-1:0] o_rd_data,
output reg o_rd_empty
`ifdef FORMAL
, output reg [LGFIFO:0] f_fill
`endif
// }}}
);
// Register/net declarations
// {{{
// MSB = most significant bit of the FIFO address vector. It's
// just short-hand for LGFIFO, and won't work any other way.
localparam MSB = LGFIFO;
//
reg [WIDTH-1:0] mem [(1<<LGFIFO)-1:0];
reg [LGFIFO:0] rd_addr, wr_addr,
rd_wgray, wr_rgray;
wire [LGFIFO:0] next_rd_addr, next_wr_addr;
reg [LGFIFO:0] rgray, wgray;
(* ASYNC_REG = "TRUE" *) reg [(LGFIFO+1)*(NFF-1)-1:0]
rgray_cross, wgray_cross;
wire wclk;
reg [WIDTH-1:0] lcl_rd_data;
reg lcl_read, lcl_rd_empty;
// }}}
// wclk - Write clock generation
// {{{
generate if (WRITE_ON_POSEDGE)
begin : GEN_POSEDGE_WRITES
assign wclk = i_wclk;
end else begin : GEN_NEGEDGE_WRITES
assign wclk = !i_wclk;
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Write to and read from memory
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// wr_addr, wgray
// {{{
assign next_wr_addr = wr_addr + 1;
always @(posedge wclk or negedge i_wr_reset_n)
if (!i_wr_reset_n)
begin
wr_addr <= 0;
wgray <= 0;
end else if (i_wr && !o_wr_full)
begin
wr_addr <= next_wr_addr;
wgray <= next_wr_addr ^ (next_wr_addr >> 1);
end
// }}}
// Write to memory
// {{{
always @(posedge wclk)
if (i_wr && !o_wr_full)
mem[wr_addr[LGFIFO-1:0]] <= i_wr_data;
// }}}
// rd_addr, rgray
// {{{
assign next_rd_addr = rd_addr + 1;
always @(posedge i_rclk or negedge i_rd_reset_n)
if (!i_rd_reset_n)
begin
rd_addr <= 0;
rgray <= 0;
end else if (lcl_read && !lcl_rd_empty)
begin
rd_addr <= next_rd_addr;
rgray <= next_rd_addr ^ (next_rd_addr >> 1);
end
// }}}
// Read from memory
// {{{
always @(*)
lcl_rd_data = mem[rd_addr[LGFIFO-1:0]];
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// Cross clock domains
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// read pointer -> wr_rgray
// {{{
always @(posedge wclk or negedge i_wr_reset_n)
if (!i_wr_reset_n)
{ wr_rgray, rgray_cross } <= 0;
else
{ wr_rgray, rgray_cross } <= { rgray_cross, rgray };
// }}}
// write pointer -> rd_wgray
// {{{
always @(posedge i_rclk or negedge i_rd_reset_n)
if (!i_rd_reset_n)
{ rd_wgray, wgray_cross } <= 0;
else
{ rd_wgray, wgray_cross } <= { wgray_cross, wgray };
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// Flag generation
// {{{
////////////////////////////////////////////////////////////////////////
//
//
always @(*)
o_wr_full = (wr_rgray == { ~wgray[MSB:MSB-1], wgray[MSB-2:0] });
always @(*)
lcl_rd_empty = (rd_wgray == rgray);
// o_rd_empty, o_rd_data
// {{{
generate if (OPT_REGISTER_READS)
begin : GEN_REGISTERED_READ
// {{{
always @(*)
lcl_read = (o_rd_empty || i_rd);
always @(posedge i_rclk or negedge i_rd_reset_n)
if (!i_rd_reset_n)
o_rd_empty <= 1'b1;
else if (lcl_read)
o_rd_empty <= lcl_rd_empty;
always @(posedge i_rclk)
if (lcl_read)
o_rd_data <= lcl_rd_data;
// }}}
end else begin : GEN_COMBINATORIAL_FLAGS
// {{{
always @(*)
lcl_read = i_rd;
always @(*)
o_rd_empty = lcl_rd_empty;
always @(*)
o_rd_data = lcl_rd_data;
// }}}
end endgenerate
// }}}
// }}}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// Formal properties
// {{{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
// Start out with some register/net/macro declarations, f_past_valid,etc
// {{{
`ifdef AFIFO
`define ASSERT assert
`define ASSUME assume
`else
`define ASSERT assert
`define ASSUME assert
`endif
(* gclk *) reg gbl_clk;
reg f_past_valid_gbl, f_past_valid_rd,
f_rd_in_reset, f_wr_in_reset;
reg [WIDTH-1:0] past_rd_data, past_wr_data;
reg past_wr_reset_n, past_rd_reset_n,
past_rd_empty, past_wclk, past_rclk, past_rd;
reg [(LGFIFO+1)*(NFF-1)-1:0] f_wcross, f_rcross;
reg [LGFIFO:0] f_rd_waddr, f_wr_raddr;
reg [LGFIFO:0] f_rdcross_fill [NFF-1:0];
reg [LGFIFO:0] f_wrcross_fill [NFF-1:0];
initial f_past_valid_gbl = 1'b0;
always @(posedge gbl_clk)
f_past_valid_gbl <= 1'b1;
initial f_past_valid_rd = 1'b0;
always @(posedge i_rclk)
f_past_valid_rd <= 1'b1;
// }}}
////////////////////////////////////////////////////////////////////////
//
// Reset checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
initial f_wr_in_reset = 1'b1;
always @(posedge wclk or negedge i_wr_reset_n)
if (!i_wr_reset_n)
f_wr_in_reset <= 1'b1;
else
f_wr_in_reset <= 1'b0;
initial f_rd_in_reset = 1'b1;
always @(posedge i_rclk or negedge i_rd_reset_n)
if (!i_rd_reset_n)
f_rd_in_reset <= 1'b1;
else
f_rd_in_reset <= 1'b0;
//
// Resets are ...
// 1. Asserted always initially, and ...
always @(*)
if (!f_past_valid_gbl)
begin
`ASSUME(!i_wr_reset_n);
`ASSUME(!i_rd_reset_n);
end
// 2. They only ever become active together
always @(*)
if (past_wr_reset_n && !i_wr_reset_n)
`ASSUME(!i_rd_reset_n);
always @(*)
if (past_rd_reset_n && !i_rd_reset_n)
`ASSUME(!i_wr_reset_n);
// }}}
////////////////////////////////////////////////////////////////////////
//
// Synchronous signal assumptions
// {{{
////////////////////////////////////////////////////////////////////////
//
//
always @(posedge gbl_clk)
begin
past_wr_reset_n <= i_wr_reset_n;
past_rd_reset_n <= i_rd_reset_n;
past_wclk <= wclk;
past_rclk <= i_rclk;
past_rd <= i_rd;
past_rd_data <= lcl_rd_data;
past_wr_data <= i_wr_data;
past_rd_empty<= lcl_rd_empty;
end
//
// Read side may be assumed to be synchronous
always @(*)
if (f_past_valid_gbl && i_rd_reset_n && (past_rclk || !i_rclk))
// i.e. if (!$rose(i_rclk))
`ASSUME(i_rd == past_rd);
always @(*)
if (f_past_valid_rd && !f_rd_in_reset && !lcl_rd_empty
&&(past_rclk || !i_rclk))
begin
`ASSERT(lcl_rd_data == past_rd_data);
`ASSERT(lcl_rd_empty == past_rd_empty);
end
generate if (F_OPT_DATA_STB)
begin
always @(posedge gbl_clk)
`ASSUME(!o_wr_full);
always @(posedge gbl_clk)
if (!i_wr_reset_n)
`ASSUME(!i_wclk);
always @(posedge gbl_clk)
`ASSUME(i_wr == i_wr_reset_n);
always @(posedge gbl_clk)
if ($changed(i_wr_reset_n))
`ASSUME($stable(wclk));
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Fill checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
always @(*)
f_fill = wr_addr - rd_addr;
always @(*)
if (!f_wr_in_reset)
`ASSERT(f_fill <= { 1'b1, {(MSB){1'b0}} });
always @(*)
if (wr_addr == rd_addr)
`ASSERT(lcl_rd_empty);
always @(*)
if ((!f_wr_in_reset && !f_rd_in_reset)
&& wr_addr == { ~rd_addr[MSB], rd_addr[MSB-1:0] })
`ASSERT(o_wr_full);
// }}}
////////////////////////////////////////////////////////////////////////
//
// Induction checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// f_wr_in_reset -- write logic is in its reset state
// {{{
always @(*)
if (f_wr_in_reset)
begin
`ASSERT(wr_addr == 0);
`ASSERT(wgray_cross == 0);
`ASSERT(rd_addr == 0);
`ASSERT(rgray_cross == 0);
`ASSERT(rd_wgray == 0);
`ASSERT(lcl_rd_empty);
`ASSERT(!o_wr_full);
end
// }}}
// f_rd_in_reset -- read logic is in its reset state
// {{{
always @(*)
if (f_rd_in_reset)
begin
`ASSERT(rd_addr == 0);
`ASSERT(rgray_cross == 0);
`ASSERT(rd_wgray == 0);
`ASSERT(lcl_rd_empty);
end
// }}}
// f_wr_raddr -- a read address to match the gray values
// {{{
always @(posedge wclk or negedge i_wr_reset_n)
if (!i_wr_reset_n)
{ f_wr_raddr, f_rcross } <= 0;
else
{ f_wr_raddr, f_rcross } <= { f_rcross, rd_addr };
// }}}
// f_rd_waddr -- a write address to match the gray values
// {{{
always @(posedge i_rclk or negedge i_rd_reset_n)
if (!i_rd_reset_n)
{ f_rd_waddr, f_wcross } <= 0;
else
{ f_rd_waddr, f_wcross } <= { f_wcross, wr_addr };
// }}}
integer k;
// wgray check
// {{{
always @(*)
`ASSERT((wr_addr ^ (wr_addr >> 1)) == wgray);
// }}}
// wgray_cross check
// {{{
always @(*)
for(k=0; k<NFF-1; k=k+1)
`ASSERT((f_wcross[k*(LGFIFO+1) +: LGFIFO+1]
^ (f_wcross[k*(LGFIFO+1)+: LGFIFO+1]>>1))
== wgray_cross[k*(LGFIFO+1) +: LGFIFO+1]);
// }}}
// rgray check
// {{{
always @(*)
`ASSERT((rd_addr ^ (rd_addr >> 1)) == rgray);
// }}}
// rgray_cross check
// {{{
always @(*)
for(k=0; k<NFF-1; k=k+1)
`ASSERT((f_rcross[k*(LGFIFO+1) +: LGFIFO+1]
^ (f_rcross[k*(LGFIFO+1) +: LGFIFO+1]>>1))
== rgray_cross[k*(LGFIFO+1) +: LGFIFO+1]);
// }}}
// wr_rgray
// {{{
always @(*)
`ASSERT((f_wr_raddr ^ (f_wr_raddr >> 1)) == wr_rgray);
// }}}
// rd_wgray
// {{{
always @(*)
`ASSERT((f_rd_waddr ^ (f_rd_waddr >> 1)) == rd_wgray);
// }}}
// f_rdcross_fill
// {{{
always @(*)
for(k=0; k<NFF-1; k=k+1)
f_rdcross_fill[k] = f_wcross[k*(LGFIFO+1) +: LGFIFO+1]
- rd_addr;
always @(*)
f_rdcross_fill[NFF-1] = f_rd_waddr - rd_addr;
always @(*)
for(k=0; k<NFF; k=k+1)
`ASSERT(f_rdcross_fill[k] <= { 1'b1, {(LGFIFO){1'b0}} });
always @(*)
for(k=1; k<NFF; k=k+1)
`ASSERT(f_rdcross_fill[k] <= f_rdcross_fill[k-1]);
always @(*)
`ASSERT(f_rdcross_fill[0] <= f_fill);
// }}}
// f_wrcross_fill
// {{{
always @(*)
for(k=0; k<NFF-1; k=k+1)
f_wrcross_fill[k] = wr_addr -
f_rcross[k*(LGFIFO+1) +: LGFIFO+1];
always @(*)
f_wrcross_fill[NFF-1] = wr_addr - f_wr_raddr;
always @(*)
for(k=0; k<NFF; k=k+1)
`ASSERT(f_wrcross_fill[k] <= { 1'b1, {(LGFIFO){1'b0}} });
always @(*)
for(k=1; k<NFF; k=k+1)
`ASSERT(f_wrcross_fill[k] >= f_wrcross_fill[k-1]);
always @(*)
`ASSERT(f_wrcross_fill[0] >= f_fill);
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// Clock generation
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Here's the challenge: if we use $past with any of our clocks, such
// as to determine stability or any such, the proof takes forever, and
// we need to guarantee a minimum number of transitions within the
// depth of the proof. If, on the other hand, we build our own $past
// primitives--we can then finish much faster and be successful on
// any depth of proof.
// pre_xclk is what the clock will become on the next global clock edge.
// By using it here, we can check things @(*) instead of
// @(posedge gbl_clk). Further, we can check $rose(pre_xclk) (or $fell)
// and essentially check things @(*) but while using @(global_clk).
// In other words, we can transition on @(posedge gbl_clk), but stay
// in sync with the data--rather than being behind by a clock.
// now_xclk is what the clock is currently.
//
(* anyseq *) reg pre_wclk, pre_rclk;
reg now_wclk, now_rclk;
always @(posedge gbl_clk)
begin
now_wclk <= pre_wclk;
now_rclk <= pre_rclk;
end
always @(*)
begin
assume(i_wclk == now_wclk);
assume(i_rclk == now_rclk);
end
always @(posedge gbl_clk)
assume(i_rclk == $past(pre_rclk));
// Assume both clocks start idle
// {{{
always @(*)
if (!f_past_valid_gbl)
begin
assume(!pre_wclk && !wclk);
assume(!pre_rclk && !i_rclk);
end
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// Formal contract check --- the twin write test
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Tracking register declarations
// {{{
reg [WIDTH-1:0] f_first, f_next;
(* anyconst *) reg [LGFIFO:0] f_addr;
reg [LGFIFO:0] f_next_addr;
reg f_first_in_fifo, f_next_in_fifo;
reg [LGFIFO:0] f_to_first, f_to_next;
reg [1:0] f_state;
always @(*)
f_next_addr = f_addr + 1;
// }}}
// distance_to*, *_in_fifo
// {{{
always @(*)
begin
f_to_first = f_addr - rd_addr;
f_first_in_fifo = 1'b1;
if ((f_to_first >= f_fill)||(f_fill == 0))
f_first_in_fifo = 1'b0;
if (mem[f_addr] != f_first)
f_first_in_fifo = 1'b0;
//
// Check the second item
//
f_to_next = f_next_addr - rd_addr;
f_next_in_fifo = 1'b1;
if ((f_to_next >= f_fill)||(f_fill == 0))
f_next_in_fifo = 1'b0;
if (mem[f_next_addr] != f_next)
f_next_in_fifo = 1'b0;
end
// }}}
// f_state -- generate our state variable
// {{{
initial f_state = 0;
always @(posedge gbl_clk)
if (!i_wr_reset_n)
f_state <= 0;
else case(f_state)
2'b00: if (($rose(pre_wclk))&& i_wr && !o_wr_full &&(wr_addr == f_addr))
begin
f_state <= 2'b01;
f_first <= i_wr_data;
end
2'b01: if ($rose(pre_rclk)&& lcl_read && rd_addr == f_addr)
f_state <= 2'b00;
else if ($rose(pre_wclk) && i_wr && !o_wr_full )
begin
f_state <= 2'b10;
f_next <= i_wr_data;
end
2'b10: if ($rose(pre_rclk) && lcl_read && !lcl_rd_empty && rd_addr == f_addr)
f_state <= 2'b11;
2'b11: if ($rose(pre_rclk) && lcl_read && !lcl_rd_empty && rd_addr == f_next_addr)
f_state <= 2'b00;
endcase
// }}}
// f_state invariants
// {{{
always @(*)
if (i_wr_reset_n) case(f_state)
2'b00: begin end
2'b01: begin
`ASSERT(f_first_in_fifo);
`ASSERT(wr_addr == f_next_addr);
`ASSERT(f_fill >= 1);
end
2'b10: begin
`ASSERT(f_first_in_fifo);
`ASSERT(f_next_in_fifo);
if (!lcl_rd_empty && (rd_addr == f_addr))
`ASSERT(lcl_rd_data == f_first);
`ASSERT(f_fill >= 2);
end
2'b11: begin
`ASSERT(rd_addr == f_next_addr);
`ASSERT(f_next_in_fifo);
`ASSERT(f_fill >= 1);
if (!lcl_rd_empty)
`ASSERT(lcl_rd_data == f_next);
end
endcase
// }}}
generate if (OPT_REGISTER_READS)
begin
reg past_o_rd_empty;
always @(posedge gbl_clk)
past_o_rd_empty <= o_rd_empty;
always @(posedge gbl_clk)
if (f_past_valid_gbl && i_rd_reset_n)
begin
if ($past(!o_rd_empty && !i_rd && i_rd_reset_n))
`ASSERT($stable(o_rd_data));
end
always @(posedge gbl_clk)
if (!f_rd_in_reset && i_rd_reset_n && i_rclk && !past_rclk)
begin
if (past_o_rd_empty)
`ASSERT(o_rd_data == past_rd_data);
if (past_rd)
`ASSERT(o_rd_data == past_rd_data);
end
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Cover checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Prove that we can read and write the FIFO
// {{{
always @(*)
if (i_wr_reset_n && i_rd_reset_n)
begin
cover(o_rd_empty);
cover(!o_rd_empty);
cover(f_state == 2'b01);
cover(f_state == 2'b10);
cover(f_state == 2'b11);
cover(&f_fill[MSB-1:0]);
cover(i_rd);
cover(i_rd && !o_rd_empty);
end
// }}}
`ifdef AFIFO
generate if (!F_OPT_DATA_STB)
begin : COVER_FULL
// {{{
reg cvr_full;
initial cvr_full = 1'b0;
always @(posedge gbl_clk)
if (!i_wr_reset_n)
cvr_full <= 1'b0;
else if (o_wr_full)
cvr_full <= 1'b1;
always @(*)
if (f_past_valid_gbl && i_wr_reset_n)
begin
cover(o_wr_full);
cover(o_rd_empty && cvr_full);
cover(o_rd_empty && f_fill == 0 && cvr_full);
end
// }}}
end else begin : COVER_NEARLY_FULL
// {{{
reg cvr_nearly_full;
initial cvr_nearly_full = 1'b0;
always @(posedge gbl_clk)
if (!i_wr_reset_n)
cvr_nearly_full <= 1'b0;
else if (f_fill == { 1'b0, {(LGFIFO){1'b1} }})
cvr_nearly_full <= 1'b1;
always @(*)
if (f_past_valid_gbl && i_wr_reset_n)
begin
cover(f_fill == { 1'b0, {(LGFIFO){1'b1} }});
cover(cvr_nearly_full && i_wr_reset_n);
cover(o_rd_empty && cvr_nearly_full);
cover(o_rd_empty && f_fill == 0 && cvr_nearly_full);
end
// }}}
end endgenerate
`endif
// }}}
`endif
// }}}
endmodule