|
9 | 9 |
|
10 | 10 | module Algebra.Morphism.Construct.DirectProduct where
|
11 | 11 |
|
12 |
| -open import Algebra.Bundles |
| 12 | +open import Algebra.Bundles using (RawMagma; RawMonoid) |
| 13 | +open import Algebra.Construct.DirectProduct using (rawMagma; rawMonoid) |
13 | 14 | open import Algebra.Morphism.Structures
|
14 | 15 | using ( module MagmaMorphisms
|
15 | 16 | ; module MonoidMorphisms
|
16 | 17 | )
|
17 |
| -open import Data.Product |
| 18 | +open import Data.Product as Product |
| 19 | + using (_,_) |
18 | 20 | open import Level using (Level)
|
19 | 21 | open import Relation.Binary.Definitions using (Reflexive)
|
20 |
| -open import Algebra.Construct.DirectProduct |
| 22 | +open import Relation.Binary.Morphism.Construct.Product |
| 23 | + using (proj₁; proj₂; <_,_>) |
21 | 24 |
|
22 | 25 | private
|
23 | 26 | variable
|
24 |
| - c ℓ : Level |
| 27 | + a b c ℓ₁ ℓ₂ ℓ₃ : Level |
25 | 28 |
|
26 | 29 | ------------------------------------------------------------------------
|
27 | 30 | -- Magmas
|
28 | 31 |
|
29 |
| -module _ (M N : RawMagma c ℓ) (open RawMagma M) (refl : Reflexive _≈_) where |
30 |
| - open MagmaMorphisms (rawMagma M N) M |
| 32 | +module Magma (M : RawMagma a ℓ₁) (N : RawMagma b ℓ₂) where |
| 33 | + open MagmaMorphisms |
31 | 34 |
|
32 |
| - isMagmaHomomorphism-proj₁ : IsMagmaHomomorphism proj₁ |
33 |
| - isMagmaHomomorphism-proj₁ = record |
34 |
| - { isRelHomomorphism = record { cong = λ {x} {y} z → z .proj₁ } |
35 |
| - ; homo = λ _ _ → refl |
36 |
| - } |
| 35 | + private |
| 36 | + module M = RawMagma M |
| 37 | + module N = RawMagma N |
37 | 38 |
|
38 |
| -module _ (M N : RawMagma c ℓ) (open RawMagma N) (refl : Reflexive _≈_) where |
39 |
| - open MagmaMorphisms (rawMagma M N) N |
| 39 | + module Proj₁ (refl : Reflexive M._≈_) where |
40 | 40 |
|
41 |
| - isMagmaHomomorphism-proj₂ : IsMagmaHomomorphism proj₂ |
42 |
| - isMagmaHomomorphism-proj₂ = record |
43 |
| - { isRelHomomorphism = record { cong = λ {x} {y} z → z .proj₂ } |
44 |
| - ; homo = λ _ _ → refl |
45 |
| - } |
| 41 | + isMagmaHomomorphism : IsMagmaHomomorphism (rawMagma M N) M Product.proj₁ |
| 42 | + isMagmaHomomorphism = record |
| 43 | + { isRelHomomorphism = proj₁ |
| 44 | + ; homo = λ _ _ → refl |
| 45 | + } |
| 46 | + |
| 47 | + module Proj₂ (refl : Reflexive N._≈_) where |
| 48 | + |
| 49 | + isMagmaHomomorphism : IsMagmaHomomorphism (rawMagma M N) N Product.proj₂ |
| 50 | + isMagmaHomomorphism = record |
| 51 | + { isRelHomomorphism = proj₂ |
| 52 | + ; homo = λ _ _ → refl |
| 53 | + } |
| 54 | + |
| 55 | + module Pair (P : RawMagma c ℓ₃) where |
| 56 | + |
| 57 | + isMagmaHomomorphism : ∀ {f h} → |
| 58 | + IsMagmaHomomorphism P M f → |
| 59 | + IsMagmaHomomorphism P N h → |
| 60 | + IsMagmaHomomorphism P (rawMagma M N) (Product.< f , h >) |
| 61 | + isMagmaHomomorphism F H = record |
| 62 | + { isRelHomomorphism = < F.isRelHomomorphism , H.isRelHomomorphism > |
| 63 | + ; homo = λ x y → F.homo x y , H.homo x y |
| 64 | + } |
| 65 | + where |
| 66 | + module F = IsMagmaHomomorphism F |
| 67 | + module H = IsMagmaHomomorphism H |
46 | 68 |
|
47 | 69 | ------------------------------------------------------------------------
|
48 | 70 | -- Monoids
|
49 | 71 |
|
50 |
| -module _ (M N : RawMonoid c ℓ) (open RawMonoid M) (refl : Reflexive _≈_) where |
51 |
| - open MonoidMorphisms (rawMonoid M N) M |
| 72 | +module Monoid (M : RawMonoid a ℓ₁) (N : RawMonoid b ℓ₂) where |
| 73 | + open MonoidMorphisms |
| 74 | + |
| 75 | + private |
| 76 | + module M = RawMonoid M |
| 77 | + module N = RawMonoid N |
| 78 | + |
| 79 | + module Proj₁ (refl : Reflexive M._≈_) where |
| 80 | + |
| 81 | + isMonoidHomomorphism : IsMonoidHomomorphism (rawMonoid M N) M Product.proj₁ |
| 82 | + isMonoidHomomorphism = record |
| 83 | + { isMagmaHomomorphism = Magma.Proj₁.isMagmaHomomorphism M.rawMagma N.rawMagma refl |
| 84 | + ; ε-homo = refl |
| 85 | + } |
| 86 | + |
| 87 | + module Proj₂ (refl : Reflexive N._≈_) where |
| 88 | + |
| 89 | + isMonoidHomomorphism : IsMonoidHomomorphism (rawMonoid M N) N Product.proj₂ |
| 90 | + isMonoidHomomorphism = record |
| 91 | + { isMagmaHomomorphism = Magma.Proj₂.isMagmaHomomorphism M.rawMagma N.rawMagma refl |
| 92 | + ; ε-homo = refl |
| 93 | + } |
52 | 94 |
|
53 |
| - isMonoidHomomorphism-proj₁ : IsMonoidHomomorphism proj₁ |
54 |
| - isMonoidHomomorphism-proj₁ = record |
55 |
| - { isMagmaHomomorphism = isMagmaHomomorphism-proj₁ _ _ refl |
56 |
| - ; ε-homo = refl |
57 |
| - } |
| 95 | + module Pair (P : RawMonoid c ℓ₃) where |
58 | 96 |
|
59 |
| -module _ (M N : RawMonoid c ℓ) (open RawMonoid N) (refl : Reflexive _≈_) where |
60 |
| - open MonoidMorphisms (rawMonoid M N) N |
| 97 | + private |
| 98 | + module P = RawMonoid P |
61 | 99 |
|
62 |
| - isMonoidHomomorphism-proj₂ : IsMonoidHomomorphism proj₂ |
63 |
| - isMonoidHomomorphism-proj₂ = record |
64 |
| - { isMagmaHomomorphism = isMagmaHomomorphism-proj₂ _ _ refl |
65 |
| - ; ε-homo = refl |
66 |
| - } |
| 100 | + isMonoidHomomorphism : ∀ {f h} → |
| 101 | + IsMonoidHomomorphism P M f → |
| 102 | + IsMonoidHomomorphism P N h → |
| 103 | + IsMonoidHomomorphism P (rawMonoid M N) (Product.< f , h >) |
| 104 | + isMonoidHomomorphism F H = record |
| 105 | + { isMagmaHomomorphism = Magma.Pair.isMagmaHomomorphism M.rawMagma N.rawMagma P.rawMagma F.isMagmaHomomorphism H.isMagmaHomomorphism |
| 106 | + ; ε-homo = F.ε-homo , H.ε-homo } |
| 107 | + where |
| 108 | + module F = IsMonoidHomomorphism F |
| 109 | + module H = IsMonoidHomomorphism H |
0 commit comments