@@ -58,7 +58,7 @@ private
58
58
∘-isMagma : IsMagma _≈_ _∘_
59
59
∘-isMagma = record
60
60
{ isEquivalence = isEquivalence
61
- ; ∙-cong = λ {_} {_} {_} {v} x≈y u≈v → S.trans u≈v (cong v x≈y )
61
+ ; ∙-cong = λ {_} {_} {_} {k} f≈g h≈k x → S.trans (h≈k _) (cong k (f≈g x) )
62
62
}
63
63
64
64
∘-magma : Magma (c ⊔ e) (c ⊔ e)
@@ -67,7 +67,7 @@ private
67
67
∘-isSemigroup : IsSemigroup _≈_ _∘_
68
68
∘-isSemigroup = record
69
69
{ isMagma = ∘-isMagma
70
- ; assoc = λ _ _ _ → S.refl
70
+ ; assoc = λ _ _ _ _ → S.refl
71
71
}
72
72
73
73
∘-semigroup : Semigroup (c ⊔ e) (c ⊔ e)
@@ -76,7 +76,7 @@ private
76
76
∘-id-isMonoid : IsMonoid _≈_ _∘_ id
77
77
∘-id-isMonoid = record
78
78
{ isSemigroup = ∘-isSemigroup
79
- ; identity = (λ _ → S.refl) , (λ _ → S.refl)
79
+ ; identity = (λ _ _ → S.refl) , (λ _ _ → S.refl)
80
80
}
81
81
82
82
∘-id-monoid : Monoid (c ⊔ e) (c ⊔ e)
@@ -112,6 +112,6 @@ module _ (f : Endo) where
112
112
^-isMonoidHomomorphism : IsMonoidHomomorphism +-0-rawMonoid ∘-id-rawMonoid (f ^_)
113
113
^-isMonoidHomomorphism = record
114
114
{ isMagmaHomomorphism = ^-isMagmaHomomorphism
115
- ; ε-homo = S.refl
115
+ ; ε-homo = λ _ → S.refl
116
116
}
117
117
0 commit comments