Skip to content

Commit bfc180d

Browse files
authored
fixing 1d convolution markdown file (#879)
1 parent d81942c commit bfc180d

File tree

1 file changed

+6
-6
lines changed
  • contents/convolutions/1d

1 file changed

+6
-6
lines changed

contents/convolutions/1d/1d.md

+6-6
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ With this in mind, we can almost directly transcribe the discrete equation into
5757
{% sample lang="cs" %}
5858
[import:63-84, lang:"csharp"](code/csharp/1DConvolution.cs)
5959
{% sample lang="py" %}
60-
[import:18-27, lang:"python"](code/python/1d_convolution.py)
60+
[import:20-31, lang:"python"](code/python/1d_convolution.py)
6161
{% endmethod %}
6262

6363
The easiest way to reason about this code is to read it as you might read a textbook.
@@ -192,7 +192,7 @@ Here it is again for clarity:
192192
{% sample lang="cs" %}
193193
[import:63-84, lang:"csharp"](code/csharp/1DConvolution.cs)
194194
{% sample lang="py" %}
195-
[import:18-27, lang:"python"](code/python/1d_convolution.py)
195+
[import:20-31, lang:"python"](code/python/1d_convolution.py)
196196
{% endmethod %}
197197

198198
Here, the main difference between the bounded and unbounded versions is that the output array size is smaller in the bounded case.
@@ -204,7 +204,7 @@ For an unbounded convolution, the function would be called with a the output arr
204204
{% sample lang="cs" %}
205205
[import:96-97, lang:"csharp"](code/csharp/1DConvolution.cs)
206206
{% sample lang="py" %}
207-
[import:37-38, lang:"python"](code/python/1d_convolution.py)
207+
[import:41-42, lang:"python"](code/python/1d_convolution.py)
208208
{% endmethod %}
209209

210210
On the other hand, the bounded call would set the output array size to simply be the length of the signal
@@ -215,7 +215,7 @@ On the other hand, the bounded call would set the output array size to simply be
215215
{% sample lang="cs" %}
216216
[import:98-99, lang:"csharp"](code/csharp/1DConvolution.cs)
217217
{% sample lang="py" %}
218-
[import:40-41, lang:"python"](code/python/1d_convolution.py)
218+
[import:44-45, lang:"python"](code/python/1d_convolution.py)
219219
{% endmethod %}
220220

221221
Finally, as we mentioned before, it is possible to center bounded convolutions by changing the location where we calculate the each point along the filter.
@@ -227,7 +227,7 @@ This can be done by modifying the following line:
227227
{% sample lang="cs" %}
228228
[import:71-71, lang:"csharp"](code/csharp/1DConvolution.cs)
229229
{% sample lang="py" %}
230-
[import:22-22, lang:"python"](code/python/1d_convolution.py)
230+
[import:25-25, lang:"python"](code/python/1d_convolution.py)
231231
{% endmethod %}
232232

233233
Here, `j` counts from `i-length(filter)` to `i`.
@@ -263,7 +263,7 @@ In code, this typically amounts to using some form of modulus operation, as show
263263
{% sample lang="cs" %}
264264
[import:38-61, lang:"csharp"](code/csharp/1DConvolution.cs)
265265
{% sample lang="py" %}
266-
[import:5-15, lang:"python"](code/python/1d_convolution.py)
266+
[import:5-17, lang:"python"](code/python/1d_convolution.py)
267267
{% endmethod %}
268268

269269
This is essentially the same as before, except for the modulus operations, which allow us to work on a periodic domain.

0 commit comments

Comments
 (0)