Skip to content

Commit 82070d0

Browse files
author
Gilles Sadowski
committed
MATH-1650.
1 parent bdd4a35 commit 82070d0

File tree

2 files changed

+163
-0
lines changed

2 files changed

+163
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,160 @@
1+
/*
2+
* Licensed to the Apache Software Foundation (ASF) under one or more
3+
* contributor license agreements. See the NOTICE file distributed with
4+
* this work for additional information regarding copyright ownership.
5+
* The ASF licenses this file to You under the Apache License, Version 2.0
6+
* (the "License"); you may not use this file except in compliance with
7+
* the License. You may obtain a copy of the License at
8+
*
9+
* http://www.apache.org/licenses/LICENSE-2.0
10+
*
11+
* Unless required by applicable law or agreed to in writing, software
12+
* distributed under the License is distributed on an "AS IS" BASIS,
13+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14+
* See the License for the specific language governing permissions and
15+
* limitations under the License.
16+
*/
17+
package org.apache.commons.math4.legacy.analysis.interpolation;
18+
19+
import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction;
20+
import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction;
21+
import org.apache.commons.math4.legacy.core.MathArrays;
22+
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
23+
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
24+
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
25+
26+
/**
27+
* Clamped cubic spline interpolator.
28+
* The interpolating function consists in cubic polynomial functions defined over the
29+
* subintervals determined by the "knot points".
30+
*
31+
* The interpolating polynomials satisfy:
32+
* <ol>
33+
* <li>The value of the interpolating function at each of the input {@code x} values
34+
* equals the corresponding input {@code y} value.</li>
35+
* <li>Adjacent polynomials are equal through two derivatives at the knot points
36+
* (i.e., adjacent polynomials "match up" at the knot points, as do their first and
37+
* second derivatives).</li>
38+
* <li>The clamped boundary condition, i.e. the interpolating function takes "a
39+
* specific direction" at both its start point and its end point by providing the
40+
* desired first derivative values (slopes) as function parameters to
41+
* {@link #interpolate(double[], double[], double, double)}.</li>
42+
* </ol>
43+
*
44+
* The algorithm is implemented as described in
45+
* <blockquote>
46+
* R.L. Burden, J.D. Faires,
47+
* <em>Numerical Analysis</em>, 9th Ed., 2010, Cengage Learning, ISBN 0-538-73351-9, pp 153-156.
48+
* </blockquote>
49+
*
50+
*/
51+
public class ClampedSplineInterpolator implements UnivariateInterpolator {
52+
/**
53+
*
54+
* The first derivatives evaluated at the first and last knot points are
55+
* approximated from a natural/unclamped spline that passes through the same
56+
* set of points.
57+
*
58+
* @param x Arguments for the interpolation points.
59+
* @param y Values for the interpolation points.
60+
* @return the interpolating function.
61+
* @throws DimensionMismatchException if {@code x} and {@code y} have different sizes.
62+
* @throws NumberIsTooSmallException if the size of {@code x < 3}.
63+
* @throws org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException if {@code x} is not sorted in strict increasing order.
64+
*/
65+
@Override
66+
public PolynomialSplineFunction interpolate(final double[] x,
67+
final double[] y) {
68+
final SplineInterpolator spliner = new SplineInterpolator();
69+
final PolynomialSplineFunction spline = spliner.interpolate(x, y);
70+
final PolynomialSplineFunction derivativeSpline = spline.polynomialSplineDerivative();
71+
final double fpStart = derivativeSpline.value(x[0]);
72+
final double fpEnd = derivativeSpline.value(x[x.length - 1]);
73+
74+
return this.interpolate(x, y, fpStart, fpEnd);
75+
}
76+
77+
/**
78+
* Computes an interpolating function for the data set with defined
79+
* boundary conditions.
80+
*
81+
* @param x Arguments for the interpolation points.
82+
* @param y Values for the interpolation points.
83+
* @param fpStart First derivative at the starting point of the returned
84+
* spline function (starting slope).
85+
* @param fpEnd First derivative at the ending point of the returned
86+
* spline function (ending slope).
87+
* @return the interpolating function.
88+
* @throws DimensionMismatchException if {@code x} and {@code y} have different sizes.
89+
* @throws NumberIsTooSmallException if the size of {@code x < 3}.
90+
* @throws org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException if {@code x} is not sorted in strict increasing order.
91+
*/
92+
public PolynomialSplineFunction interpolate(final double[] x,
93+
final double[] y,
94+
final double fpStart,
95+
final double fpEnd) {
96+
if (x.length != y.length) {
97+
throw new DimensionMismatchException(x.length, y.length);
98+
}
99+
100+
if (x.length < 3) {
101+
throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS,
102+
x.length, 3, true);
103+
}
104+
105+
// Number of intervals. The number of data points is n + 1.
106+
final int n = x.length - 1;
107+
108+
MathArrays.checkOrder(x);
109+
110+
// Differences between knot points.
111+
final double[] h = new double[n];
112+
for (int i = 0; i < n; i++) {
113+
h[i] = x[i + 1] - x[i];
114+
}
115+
116+
final double[] mu = new double[n];
117+
final double[] z = new double[n + 1];
118+
119+
final double alpha0 = 3 * ((y[1] - y[0]) / h[0] - fpStart);
120+
final double alphaN = 3 * (fpEnd - (y[n] - y[n - 1]) / h[n - 1]);
121+
122+
mu[0] = 0.5;
123+
final double ell0 = 2 * h[0];
124+
z[0] = alpha0 / ell0;
125+
126+
for (int i = 1; i < n; i++) {
127+
final double alpha = 3 * ((y[i + 1] - y[i]) / h[i] - (y[i] - y[i - 1]) / h[i - 1]);
128+
final double ell = 2 * (x[i + 1] - x[i - 1]) - h[i - 1] * mu[i - 1];
129+
mu[i] = h[i] / ell;
130+
z[i] = (alpha - h[i - 1] * z[i - 1]) / ell;
131+
}
132+
133+
// Cubic spline coefficients.
134+
final double[] b = new double[n]; // Linear.
135+
final double[] c = new double[n + 1]; // Quadratic.
136+
final double[] d = new double[n]; // Cubic.
137+
138+
final double ellN = h[n - 1] * (2 - mu[n - 1]);
139+
z[n] = (alphaN - h[n - 1] * z[n - 1]) / ellN;
140+
c[n] = z[n];
141+
142+
for (int j = n - 1; j >= 0; j--) {
143+
c[j] = z[j] - mu[j] * c[j + 1];
144+
b[j] = ((y[j + 1] - y[j]) / h[j]) - h[j] * (c[j + 1] + 2 * c[j]) / 3;
145+
d[j] = (c[j + 1] - c[j]) / (3 * h[j]);
146+
}
147+
148+
final PolynomialFunction[] polynomials = new PolynomialFunction[n];
149+
final double[] coefficients = new double[4];
150+
for (int i = 0; i < n; i++) {
151+
coefficients[0] = y[i];
152+
coefficients[1] = b[i];
153+
coefficients[2] = c[i];
154+
coefficients[3] = d[i];
155+
polynomials[i] = new PolynomialFunction(coefficients);
156+
}
157+
158+
return new PolynomialSplineFunction(x, polynomials);
159+
}
160+
}

src/changes/changes.xml

+3
Original file line numberDiff line numberDiff line change
@@ -96,6 +96,9 @@ Caveat:
9696
to support the whole codebase (it was one of the main reasons for
9797
creating more focused components).
9898
">
99+
<action dev="erans" type="add" issue="MATH-1650" due-to="Michael Scholz">
100+
New class: "ClampedSplineInterpolator".
101+
</action>
99102
<action dev="aherbert" type="update" issue="MATH-1671">
100103
Update o.a.c.m.legacy.stat.descriptive package. Functionality has been
101104
partially transferred to Commons Statistics descriptive.

0 commit comments

Comments
 (0)