|
| 1 | +// Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +// or more contributor license agreements. See the NOTICE file |
| 3 | +// distributed with this work for additional information |
| 4 | +// regarding copyright ownership. The ASF licenses this file |
| 5 | +// to you under the Apache License, Version 2.0 (the |
| 6 | +// "License"); you may not use this file except in compliance |
| 7 | +// with the License. You may obtain a copy of the License at |
| 8 | +// |
| 9 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +// |
| 11 | +// Unless required by applicable law or agreed to in writing, |
| 12 | +// software distributed under the License is distributed on an |
| 13 | +// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +// KIND, either express or implied. See the License for the |
| 15 | +// specific language governing permissions and limitations |
| 16 | +// under the License. |
| 17 | + |
| 18 | +use std::collections::HashMap; |
| 19 | +use std::sync::{Arc, LazyLock}; |
| 20 | + |
| 21 | +use arrow::array::{Int32Array, StringArray, StringDictionaryBuilder}; |
| 22 | +use arrow::datatypes::Int32Type; |
| 23 | +use arrow::record_batch::RecordBatch; |
| 24 | +use arrow::util::pretty::pretty_format_batches; |
| 25 | +use arrow_schema::{DataType, Field, Schema}; |
| 26 | +use datafusion::datasource::listing::{ListingOptions, ListingTable, ListingTableConfig}; |
| 27 | +use datafusion::prelude::{SessionConfig, SessionContext}; |
| 28 | +use datafusion_datasource::ListingTableUrl; |
| 29 | +use datafusion_datasource_parquet::ParquetFormat; |
| 30 | +use datafusion_execution::object_store::ObjectStoreUrl; |
| 31 | +use itertools::Itertools; |
| 32 | +use object_store::memory::InMemory; |
| 33 | +use object_store::path::Path; |
| 34 | +use object_store::{ObjectStore, PutPayload}; |
| 35 | +use parquet::arrow::ArrowWriter; |
| 36 | +use rand::rngs::StdRng; |
| 37 | +use rand::{Rng, SeedableRng}; |
| 38 | +use tokio::sync::Mutex; |
| 39 | +use tokio::task::JoinSet; |
| 40 | + |
| 41 | +#[derive(Clone)] |
| 42 | +struct TestDataSet { |
| 43 | + store: Arc<dyn ObjectStore>, |
| 44 | + schema: Arc<Schema>, |
| 45 | +} |
| 46 | + |
| 47 | +/// List of in memory parquet files with UTF8 data |
| 48 | +// Use a mutex rather than LazyLock to allow for async initialization |
| 49 | +static TESTFILES: LazyLock<Mutex<Vec<TestDataSet>>> = |
| 50 | + LazyLock::new(|| Mutex::new(vec![])); |
| 51 | + |
| 52 | +async fn test_files() -> Vec<TestDataSet> { |
| 53 | + let files_mutex = &TESTFILES; |
| 54 | + let mut files = files_mutex.lock().await; |
| 55 | + if !files.is_empty() { |
| 56 | + return (*files).clone(); |
| 57 | + } |
| 58 | + |
| 59 | + let mut rng = StdRng::seed_from_u64(0); |
| 60 | + |
| 61 | + for nulls_in_ids in [false, true] { |
| 62 | + for nulls_in_names in [false, true] { |
| 63 | + for nulls_in_departments in [false, true] { |
| 64 | + let store = Arc::new(InMemory::new()); |
| 65 | + |
| 66 | + let schema = Arc::new(Schema::new(vec![ |
| 67 | + Field::new("id", DataType::Int32, nulls_in_ids), |
| 68 | + Field::new("name", DataType::Utf8, nulls_in_names), |
| 69 | + Field::new( |
| 70 | + "department", |
| 71 | + DataType::Dictionary( |
| 72 | + Box::new(DataType::Int32), |
| 73 | + Box::new(DataType::Utf8), |
| 74 | + ), |
| 75 | + nulls_in_departments, |
| 76 | + ), |
| 77 | + ])); |
| 78 | + |
| 79 | + let name_choices = if nulls_in_names { |
| 80 | + [Some("Alice"), Some("Bob"), None, Some("David"), None] |
| 81 | + } else { |
| 82 | + [ |
| 83 | + Some("Alice"), |
| 84 | + Some("Bob"), |
| 85 | + Some("Charlie"), |
| 86 | + Some("David"), |
| 87 | + Some("Eve"), |
| 88 | + ] |
| 89 | + }; |
| 90 | + |
| 91 | + let department_choices = if nulls_in_departments { |
| 92 | + [ |
| 93 | + Some("Theater"), |
| 94 | + Some("Engineering"), |
| 95 | + None, |
| 96 | + Some("Arts"), |
| 97 | + None, |
| 98 | + ] |
| 99 | + } else { |
| 100 | + [ |
| 101 | + Some("Theater"), |
| 102 | + Some("Engineering"), |
| 103 | + Some("Healthcare"), |
| 104 | + Some("Arts"), |
| 105 | + Some("Music"), |
| 106 | + ] |
| 107 | + }; |
| 108 | + |
| 109 | + // Generate 5 files, some with overlapping or repeated ids some without |
| 110 | + for i in 0..5 { |
| 111 | + let num_batches = rng.gen_range(1..3); |
| 112 | + let mut batches = Vec::with_capacity(num_batches); |
| 113 | + for _ in 0..num_batches { |
| 114 | + let num_rows = 25; |
| 115 | + let ids = Int32Array::from_iter((0..num_rows).map(|file| { |
| 116 | + if nulls_in_ids { |
| 117 | + if rng.gen_bool(1.0 / 10.0) { |
| 118 | + None |
| 119 | + } else { |
| 120 | + Some(rng.gen_range(file..file + 5)) |
| 121 | + } |
| 122 | + } else { |
| 123 | + Some(rng.gen_range(file..file + 5)) |
| 124 | + } |
| 125 | + })); |
| 126 | + let names = StringArray::from_iter((0..num_rows).map(|_| { |
| 127 | + // randomly select a name |
| 128 | + let idx = rng.gen_range(0..name_choices.len()); |
| 129 | + name_choices[idx].map(|s| s.to_string()) |
| 130 | + })); |
| 131 | + let mut departments = StringDictionaryBuilder::<Int32Type>::new(); |
| 132 | + for _ in 0..num_rows { |
| 133 | + // randomly select a department |
| 134 | + let idx = rng.gen_range(0..department_choices.len()); |
| 135 | + departments.append_option(department_choices[idx].as_ref()); |
| 136 | + } |
| 137 | + let batch = RecordBatch::try_new( |
| 138 | + schema.clone(), |
| 139 | + vec![ |
| 140 | + Arc::new(ids), |
| 141 | + Arc::new(names), |
| 142 | + Arc::new(departments.finish()), |
| 143 | + ], |
| 144 | + ) |
| 145 | + .unwrap(); |
| 146 | + batches.push(batch); |
| 147 | + } |
| 148 | + let mut buf = vec![]; |
| 149 | + { |
| 150 | + let mut writer = |
| 151 | + ArrowWriter::try_new(&mut buf, schema.clone(), None).unwrap(); |
| 152 | + for batch in batches { |
| 153 | + writer.write(&batch).unwrap(); |
| 154 | + writer.flush().unwrap(); |
| 155 | + } |
| 156 | + writer.flush().unwrap(); |
| 157 | + writer.finish().unwrap(); |
| 158 | + } |
| 159 | + let payload = PutPayload::from(buf); |
| 160 | + let path = Path::from(format!("file_{i}.parquet")); |
| 161 | + store.put(&path, payload).await.unwrap(); |
| 162 | + } |
| 163 | + files.push(TestDataSet { store, schema }); |
| 164 | + } |
| 165 | + } |
| 166 | + } |
| 167 | + (*files).clone() |
| 168 | +} |
| 169 | + |
| 170 | +async fn run_query_with_config( |
| 171 | + query: &str, |
| 172 | + config: SessionConfig, |
| 173 | + dataset: TestDataSet, |
| 174 | +) -> Vec<RecordBatch> { |
| 175 | + let store = dataset.store; |
| 176 | + let schema = dataset.schema; |
| 177 | + let ctx = SessionContext::new_with_config(config); |
| 178 | + let url = ObjectStoreUrl::parse("memory://").unwrap(); |
| 179 | + ctx.register_object_store(url.as_ref(), store.clone()); |
| 180 | + |
| 181 | + let format = Arc::new( |
| 182 | + ParquetFormat::default() |
| 183 | + .with_options(ctx.state().table_options().parquet.clone()), |
| 184 | + ); |
| 185 | + let options = ListingOptions::new(format); |
| 186 | + let table_path = ListingTableUrl::parse("memory:///").unwrap(); |
| 187 | + let config = ListingTableConfig::new(table_path) |
| 188 | + .with_listing_options(options) |
| 189 | + .with_schema(schema); |
| 190 | + let table = Arc::new(ListingTable::try_new(config).unwrap()); |
| 191 | + |
| 192 | + ctx.register_table("test_table", table).unwrap(); |
| 193 | + |
| 194 | + ctx.sql(query).await.unwrap().collect().await.unwrap() |
| 195 | +} |
| 196 | + |
| 197 | +#[derive(Debug)] |
| 198 | +struct RunQueryResult { |
| 199 | + query: String, |
| 200 | + result: Vec<RecordBatch>, |
| 201 | + expected: Vec<RecordBatch>, |
| 202 | +} |
| 203 | + |
| 204 | +impl RunQueryResult { |
| 205 | + fn expected_formated(&self) -> String { |
| 206 | + format!("{}", pretty_format_batches(&self.expected).unwrap()) |
| 207 | + } |
| 208 | + |
| 209 | + fn result_formated(&self) -> String { |
| 210 | + format!("{}", pretty_format_batches(&self.result).unwrap()) |
| 211 | + } |
| 212 | + |
| 213 | + fn is_ok(&self) -> bool { |
| 214 | + self.expected_formated() == self.result_formated() |
| 215 | + } |
| 216 | +} |
| 217 | + |
| 218 | +async fn run_query( |
| 219 | + query: String, |
| 220 | + cfg: SessionConfig, |
| 221 | + dataset: TestDataSet, |
| 222 | +) -> RunQueryResult { |
| 223 | + let cfg_with_dynamic_filters = cfg |
| 224 | + .clone() |
| 225 | + .set_bool("datafusion.optimizer.enable_dynamic_filter_pushdown", true); |
| 226 | + let cfg_without_dynamic_filters = cfg |
| 227 | + .clone() |
| 228 | + .set_bool("datafusion.optimizer.enable_dynamic_filter_pushdown", false); |
| 229 | + |
| 230 | + let expected_result = |
| 231 | + run_query_with_config(&query, cfg_without_dynamic_filters, dataset.clone()).await; |
| 232 | + let result = |
| 233 | + run_query_with_config(&query, cfg_with_dynamic_filters, dataset.clone()).await; |
| 234 | + |
| 235 | + RunQueryResult { |
| 236 | + query: query.to_string(), |
| 237 | + result, |
| 238 | + expected: expected_result, |
| 239 | + } |
| 240 | +} |
| 241 | + |
| 242 | +struct TestCase { |
| 243 | + query: String, |
| 244 | + cfg: SessionConfig, |
| 245 | + dataset: TestDataSet, |
| 246 | +} |
| 247 | + |
| 248 | +#[tokio::test(flavor = "multi_thread")] |
| 249 | +async fn test_fuzz_topk_filter_pushdown() { |
| 250 | + let order_columns = ["id", "name", "department"]; |
| 251 | + let order_directions = ["ASC", "DESC"]; |
| 252 | + let null_orders = ["NULLS FIRST", "NULLS LAST"]; |
| 253 | + |
| 254 | + let start = datafusion_common::instant::Instant::now(); |
| 255 | + let mut orders: HashMap<String, Vec<String>> = HashMap::new(); |
| 256 | + for order_column in &order_columns { |
| 257 | + for order_direction in &order_directions { |
| 258 | + for null_order in &null_orders { |
| 259 | + // if there is a vec for this column insert the order, otherwise create a new vec |
| 260 | + let ordering = |
| 261 | + format!("{} {} {}", order_column, order_direction, null_order); |
| 262 | + match orders.get_mut(*order_column) { |
| 263 | + Some(order_vec) => { |
| 264 | + order_vec.push(ordering); |
| 265 | + } |
| 266 | + None => { |
| 267 | + orders.insert(order_column.to_string(), vec![ordering]); |
| 268 | + } |
| 269 | + } |
| 270 | + } |
| 271 | + } |
| 272 | + } |
| 273 | + |
| 274 | + let mut queries = vec![]; |
| 275 | + |
| 276 | + for limit in [1, 10] { |
| 277 | + for num_order_by_columns in [1, 2, 3] { |
| 278 | + for order_columns in ["id", "name", "department"] |
| 279 | + .iter() |
| 280 | + .combinations(num_order_by_columns) |
| 281 | + { |
| 282 | + for orderings in order_columns |
| 283 | + .iter() |
| 284 | + .map(|col| orders.get(**col).unwrap()) |
| 285 | + .multi_cartesian_product() |
| 286 | + { |
| 287 | + let query = format!( |
| 288 | + "SELECT * FROM test_table ORDER BY {} LIMIT {}", |
| 289 | + orderings.into_iter().join(", "), |
| 290 | + limit |
| 291 | + ); |
| 292 | + queries.push(query); |
| 293 | + } |
| 294 | + } |
| 295 | + } |
| 296 | + } |
| 297 | + |
| 298 | + queries.sort_unstable(); |
| 299 | + println!( |
| 300 | + "Generated {} queries in {:?}", |
| 301 | + queries.len(), |
| 302 | + start.elapsed() |
| 303 | + ); |
| 304 | + |
| 305 | + let start = datafusion_common::instant::Instant::now(); |
| 306 | + let datasets = test_files().await; |
| 307 | + println!("Generated test files in {:?}", start.elapsed()); |
| 308 | + |
| 309 | + let mut test_cases = vec![]; |
| 310 | + for enable_filter_pushdown in [true, false] { |
| 311 | + for query in &queries { |
| 312 | + for dataset in &datasets { |
| 313 | + let mut cfg = SessionConfig::new(); |
| 314 | + cfg = cfg.set_bool( |
| 315 | + "datafusion.optimizer.enable_dynamic_filter_pushdown", |
| 316 | + enable_filter_pushdown, |
| 317 | + ); |
| 318 | + test_cases.push(TestCase { |
| 319 | + query: query.to_string(), |
| 320 | + cfg, |
| 321 | + dataset: dataset.clone(), |
| 322 | + }); |
| 323 | + } |
| 324 | + } |
| 325 | + } |
| 326 | + |
| 327 | + let start = datafusion_common::instant::Instant::now(); |
| 328 | + let mut join_set = JoinSet::new(); |
| 329 | + for tc in test_cases { |
| 330 | + join_set.spawn(run_query(tc.query, tc.cfg, tc.dataset)); |
| 331 | + } |
| 332 | + let mut results = join_set.join_all().await; |
| 333 | + results.sort_unstable_by(|a, b| a.query.cmp(&b.query)); |
| 334 | + println!("Ran {} test cases in {:?}", results.len(), start.elapsed()); |
| 335 | + |
| 336 | + let failures = results |
| 337 | + .iter() |
| 338 | + .filter(|result| !result.is_ok()) |
| 339 | + .collect::<Vec<_>>(); |
| 340 | + |
| 341 | + for failure in &failures { |
| 342 | + println!("Failure:"); |
| 343 | + println!("Query:\n{}", failure.query); |
| 344 | + println!("\nExpected:\n{}", failure.expected_formated()); |
| 345 | + println!("\nResult:\n{}", failure.result_formated()); |
| 346 | + println!("\n\n"); |
| 347 | + } |
| 348 | + |
| 349 | + if !failures.is_empty() { |
| 350 | + panic!("Some test cases failed"); |
| 351 | + } else { |
| 352 | + println!("All test cases passed"); |
| 353 | + } |
| 354 | +} |
0 commit comments