|
| 1 | +// Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +// or more contributor license agreements. See the NOTICE file |
| 3 | +// distributed with this work for additional information |
| 4 | +// regarding copyright ownership. The ASF licenses this file |
| 5 | +// to you under the Apache License, Version 2.0 (the |
| 6 | +// "License"); you may not use this file except in compliance |
| 7 | +// with the License. You may obtain a copy of the License at |
| 8 | +// |
| 9 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +// |
| 11 | +// Unless required by applicable law or agreed to in writing, |
| 12 | +// software distributed under the License is distributed on an |
| 13 | +// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +// KIND, either express or implied. See the License for the |
| 15 | +// specific language governing permissions and limitations |
| 16 | +// under the License. |
| 17 | + |
| 18 | +use datafusion_common::config::ConfigOptions; |
| 19 | +use datafusion_execution::TaskContext; |
| 20 | +use datafusion_physical_optimizer::aggregate_statistics::AggregateStatistics; |
| 21 | +use datafusion_physical_optimizer::PhysicalOptimizerRule; |
| 22 | +use datafusion_physical_plan::aggregates::AggregateExec; |
| 23 | +use datafusion_physical_plan::projection::ProjectionExec; |
| 24 | +use datafusion_physical_plan::ExecutionPlan; |
| 25 | +use std::sync::Arc; |
| 26 | + |
| 27 | +use datafusion_common::Result; |
| 28 | + |
| 29 | +use datafusion_physical_plan::aggregates::PhysicalGroupBy; |
| 30 | +use datafusion_physical_plan::coalesce_partitions::CoalescePartitionsExec; |
| 31 | +use datafusion_physical_plan::common; |
| 32 | +use datafusion_physical_plan::filter::FilterExec; |
| 33 | +use datafusion_physical_plan::memory::MemoryExec; |
| 34 | + |
| 35 | +use arrow::array::Int32Array; |
| 36 | +use arrow::datatypes::{DataType, Field, Schema}; |
| 37 | +use arrow::record_batch::RecordBatch; |
| 38 | +use datafusion_common::cast::as_int64_array; |
| 39 | +use datafusion_expr::Operator; |
| 40 | +use datafusion_physical_expr::expressions::{self, cast}; |
| 41 | +use datafusion_physical_optimizer::test_utils::TestAggregate; |
| 42 | +use datafusion_physical_plan::aggregates::AggregateMode; |
| 43 | + |
| 44 | +/// Mock data using a MemoryExec which has an exact count statistic |
| 45 | +fn mock_data() -> Result<Arc<MemoryExec>> { |
| 46 | + let schema = Arc::new(Schema::new(vec![ |
| 47 | + Field::new("a", DataType::Int32, true), |
| 48 | + Field::new("b", DataType::Int32, true), |
| 49 | + ])); |
| 50 | + |
| 51 | + let batch = RecordBatch::try_new( |
| 52 | + Arc::clone(&schema), |
| 53 | + vec![ |
| 54 | + Arc::new(Int32Array::from(vec![Some(1), Some(2), None])), |
| 55 | + Arc::new(Int32Array::from(vec![Some(4), None, Some(6)])), |
| 56 | + ], |
| 57 | + )?; |
| 58 | + |
| 59 | + Ok(Arc::new(MemoryExec::try_new( |
| 60 | + &[vec![batch]], |
| 61 | + Arc::clone(&schema), |
| 62 | + None, |
| 63 | + )?)) |
| 64 | +} |
| 65 | + |
| 66 | +/// Checks that the count optimization was applied and we still get the right result |
| 67 | +async fn assert_count_optim_success( |
| 68 | + plan: AggregateExec, |
| 69 | + agg: TestAggregate, |
| 70 | +) -> Result<()> { |
| 71 | + let task_ctx = Arc::new(TaskContext::default()); |
| 72 | + let plan: Arc<dyn ExecutionPlan> = Arc::new(plan); |
| 73 | + |
| 74 | + let config = ConfigOptions::new(); |
| 75 | + let optimized = AggregateStatistics::new().optimize(Arc::clone(&plan), &config)?; |
| 76 | + |
| 77 | + // A ProjectionExec is a sign that the count optimization was applied |
| 78 | + assert!(optimized.as_any().is::<ProjectionExec>()); |
| 79 | + |
| 80 | + // run both the optimized and nonoptimized plan |
| 81 | + let optimized_result = |
| 82 | + common::collect(optimized.execute(0, Arc::clone(&task_ctx))?).await?; |
| 83 | + let nonoptimized_result = common::collect(plan.execute(0, task_ctx)?).await?; |
| 84 | + assert_eq!(optimized_result.len(), nonoptimized_result.len()); |
| 85 | + |
| 86 | + // and validate the results are the same and expected |
| 87 | + assert_eq!(optimized_result.len(), 1); |
| 88 | + check_batch(optimized_result.into_iter().next().unwrap(), &agg); |
| 89 | + // check the non optimized one too to ensure types and names remain the same |
| 90 | + assert_eq!(nonoptimized_result.len(), 1); |
| 91 | + check_batch(nonoptimized_result.into_iter().next().unwrap(), &agg); |
| 92 | + |
| 93 | + Ok(()) |
| 94 | +} |
| 95 | + |
| 96 | +fn check_batch(batch: RecordBatch, agg: &TestAggregate) { |
| 97 | + let schema = batch.schema(); |
| 98 | + let fields = schema.fields(); |
| 99 | + assert_eq!(fields.len(), 1); |
| 100 | + |
| 101 | + let field = &fields[0]; |
| 102 | + assert_eq!(field.name(), agg.column_name()); |
| 103 | + assert_eq!(field.data_type(), &DataType::Int64); |
| 104 | + // note that nullability differs |
| 105 | + |
| 106 | + assert_eq!( |
| 107 | + as_int64_array(batch.column(0)).unwrap().values(), |
| 108 | + &[agg.expected_count()] |
| 109 | + ); |
| 110 | +} |
| 111 | + |
| 112 | +#[tokio::test] |
| 113 | +async fn test_count_partial_direct_child() -> Result<()> { |
| 114 | + // basic test case with the aggregation applied on a source with exact statistics |
| 115 | + let source = mock_data()?; |
| 116 | + let schema = source.schema(); |
| 117 | + let agg = TestAggregate::new_count_star(); |
| 118 | + |
| 119 | + let partial_agg = AggregateExec::try_new( |
| 120 | + AggregateMode::Partial, |
| 121 | + PhysicalGroupBy::default(), |
| 122 | + vec![Arc::new(agg.count_expr(&schema))], |
| 123 | + vec![None], |
| 124 | + source, |
| 125 | + Arc::clone(&schema), |
| 126 | + )?; |
| 127 | + |
| 128 | + let final_agg = AggregateExec::try_new( |
| 129 | + AggregateMode::Final, |
| 130 | + PhysicalGroupBy::default(), |
| 131 | + vec![Arc::new(agg.count_expr(&schema))], |
| 132 | + vec![None], |
| 133 | + Arc::new(partial_agg), |
| 134 | + Arc::clone(&schema), |
| 135 | + )?; |
| 136 | + |
| 137 | + assert_count_optim_success(final_agg, agg).await?; |
| 138 | + |
| 139 | + Ok(()) |
| 140 | +} |
| 141 | + |
| 142 | +#[tokio::test] |
| 143 | +async fn test_count_partial_with_nulls_direct_child() -> Result<()> { |
| 144 | + // basic test case with the aggregation applied on a source with exact statistics |
| 145 | + let source = mock_data()?; |
| 146 | + let schema = source.schema(); |
| 147 | + let agg = TestAggregate::new_count_column(&schema); |
| 148 | + |
| 149 | + let partial_agg = AggregateExec::try_new( |
| 150 | + AggregateMode::Partial, |
| 151 | + PhysicalGroupBy::default(), |
| 152 | + vec![Arc::new(agg.count_expr(&schema))], |
| 153 | + vec![None], |
| 154 | + source, |
| 155 | + Arc::clone(&schema), |
| 156 | + )?; |
| 157 | + |
| 158 | + let final_agg = AggregateExec::try_new( |
| 159 | + AggregateMode::Final, |
| 160 | + PhysicalGroupBy::default(), |
| 161 | + vec![Arc::new(agg.count_expr(&schema))], |
| 162 | + vec![None], |
| 163 | + Arc::new(partial_agg), |
| 164 | + Arc::clone(&schema), |
| 165 | + )?; |
| 166 | + |
| 167 | + assert_count_optim_success(final_agg, agg).await?; |
| 168 | + |
| 169 | + Ok(()) |
| 170 | +} |
| 171 | + |
| 172 | +#[tokio::test] |
| 173 | +async fn test_count_partial_indirect_child() -> Result<()> { |
| 174 | + let source = mock_data()?; |
| 175 | + let schema = source.schema(); |
| 176 | + let agg = TestAggregate::new_count_star(); |
| 177 | + |
| 178 | + let partial_agg = AggregateExec::try_new( |
| 179 | + AggregateMode::Partial, |
| 180 | + PhysicalGroupBy::default(), |
| 181 | + vec![Arc::new(agg.count_expr(&schema))], |
| 182 | + vec![None], |
| 183 | + source, |
| 184 | + Arc::clone(&schema), |
| 185 | + )?; |
| 186 | + |
| 187 | + // We introduce an intermediate optimization step between the partial and final aggregator |
| 188 | + let coalesce = CoalescePartitionsExec::new(Arc::new(partial_agg)); |
| 189 | + |
| 190 | + let final_agg = AggregateExec::try_new( |
| 191 | + AggregateMode::Final, |
| 192 | + PhysicalGroupBy::default(), |
| 193 | + vec![Arc::new(agg.count_expr(&schema))], |
| 194 | + vec![None], |
| 195 | + Arc::new(coalesce), |
| 196 | + Arc::clone(&schema), |
| 197 | + )?; |
| 198 | + |
| 199 | + assert_count_optim_success(final_agg, agg).await?; |
| 200 | + |
| 201 | + Ok(()) |
| 202 | +} |
| 203 | + |
| 204 | +#[tokio::test] |
| 205 | +async fn test_count_partial_with_nulls_indirect_child() -> Result<()> { |
| 206 | + let source = mock_data()?; |
| 207 | + let schema = source.schema(); |
| 208 | + let agg = TestAggregate::new_count_column(&schema); |
| 209 | + |
| 210 | + let partial_agg = AggregateExec::try_new( |
| 211 | + AggregateMode::Partial, |
| 212 | + PhysicalGroupBy::default(), |
| 213 | + vec![Arc::new(agg.count_expr(&schema))], |
| 214 | + vec![None], |
| 215 | + source, |
| 216 | + Arc::clone(&schema), |
| 217 | + )?; |
| 218 | + |
| 219 | + // We introduce an intermediate optimization step between the partial and final aggregator |
| 220 | + let coalesce = CoalescePartitionsExec::new(Arc::new(partial_agg)); |
| 221 | + |
| 222 | + let final_agg = AggregateExec::try_new( |
| 223 | + AggregateMode::Final, |
| 224 | + PhysicalGroupBy::default(), |
| 225 | + vec![Arc::new(agg.count_expr(&schema))], |
| 226 | + vec![None], |
| 227 | + Arc::new(coalesce), |
| 228 | + Arc::clone(&schema), |
| 229 | + )?; |
| 230 | + |
| 231 | + assert_count_optim_success(final_agg, agg).await?; |
| 232 | + |
| 233 | + Ok(()) |
| 234 | +} |
| 235 | + |
| 236 | +#[tokio::test] |
| 237 | +async fn test_count_inexact_stat() -> Result<()> { |
| 238 | + let source = mock_data()?; |
| 239 | + let schema = source.schema(); |
| 240 | + let agg = TestAggregate::new_count_star(); |
| 241 | + |
| 242 | + // adding a filter makes the statistics inexact |
| 243 | + let filter = Arc::new(FilterExec::try_new( |
| 244 | + expressions::binary( |
| 245 | + expressions::col("a", &schema)?, |
| 246 | + Operator::Gt, |
| 247 | + cast(expressions::lit(1u32), &schema, DataType::Int32)?, |
| 248 | + &schema, |
| 249 | + )?, |
| 250 | + source, |
| 251 | + )?); |
| 252 | + |
| 253 | + let partial_agg = AggregateExec::try_new( |
| 254 | + AggregateMode::Partial, |
| 255 | + PhysicalGroupBy::default(), |
| 256 | + vec![Arc::new(agg.count_expr(&schema))], |
| 257 | + vec![None], |
| 258 | + filter, |
| 259 | + Arc::clone(&schema), |
| 260 | + )?; |
| 261 | + |
| 262 | + let final_agg = AggregateExec::try_new( |
| 263 | + AggregateMode::Final, |
| 264 | + PhysicalGroupBy::default(), |
| 265 | + vec![Arc::new(agg.count_expr(&schema))], |
| 266 | + vec![None], |
| 267 | + Arc::new(partial_agg), |
| 268 | + Arc::clone(&schema), |
| 269 | + )?; |
| 270 | + |
| 271 | + let conf = ConfigOptions::new(); |
| 272 | + let optimized = AggregateStatistics::new().optimize(Arc::new(final_agg), &conf)?; |
| 273 | + |
| 274 | + // check that the original ExecutionPlan was not replaced |
| 275 | + assert!(optimized.as_any().is::<AggregateExec>()); |
| 276 | + |
| 277 | + Ok(()) |
| 278 | +} |
| 279 | + |
| 280 | +#[tokio::test] |
| 281 | +async fn test_count_with_nulls_inexact_stat() -> Result<()> { |
| 282 | + let source = mock_data()?; |
| 283 | + let schema = source.schema(); |
| 284 | + let agg = TestAggregate::new_count_column(&schema); |
| 285 | + |
| 286 | + // adding a filter makes the statistics inexact |
| 287 | + let filter = Arc::new(FilterExec::try_new( |
| 288 | + expressions::binary( |
| 289 | + expressions::col("a", &schema)?, |
| 290 | + Operator::Gt, |
| 291 | + cast(expressions::lit(1u32), &schema, DataType::Int32)?, |
| 292 | + &schema, |
| 293 | + )?, |
| 294 | + source, |
| 295 | + )?); |
| 296 | + |
| 297 | + let partial_agg = AggregateExec::try_new( |
| 298 | + AggregateMode::Partial, |
| 299 | + PhysicalGroupBy::default(), |
| 300 | + vec![Arc::new(agg.count_expr(&schema))], |
| 301 | + vec![None], |
| 302 | + filter, |
| 303 | + Arc::clone(&schema), |
| 304 | + )?; |
| 305 | + |
| 306 | + let final_agg = AggregateExec::try_new( |
| 307 | + AggregateMode::Final, |
| 308 | + PhysicalGroupBy::default(), |
| 309 | + vec![Arc::new(agg.count_expr(&schema))], |
| 310 | + vec![None], |
| 311 | + Arc::new(partial_agg), |
| 312 | + Arc::clone(&schema), |
| 313 | + )?; |
| 314 | + |
| 315 | + let conf = ConfigOptions::new(); |
| 316 | + let optimized = AggregateStatistics::new().optimize(Arc::new(final_agg), &conf)?; |
| 317 | + |
| 318 | + // check that the original ExecutionPlan was not replaced |
| 319 | + assert!(optimized.as_any().is::<AggregateExec>()); |
| 320 | + |
| 321 | + Ok(()) |
| 322 | +} |
0 commit comments