@@ -59,7 +59,6 @@ def fit(self, X: Dict[str, Any], y: Any = None) -> "TabularColumnTransformer":
59
59
column_transformers : List [Tuple [str , BaseEstimator , List [int ]]] = []
60
60
61
61
numerical_pipeline = 'passthrough'
62
- categorical_pipeline = 'passthrough'
63
62
encode_pipeline = 'passthrough'
64
63
65
64
if len (preprocessors ['numerical' ]) > 0 :
@@ -68,12 +67,6 @@ def fit(self, X: Dict[str, Any], y: Any = None) -> "TabularColumnTransformer":
68
67
column_transformers .append (
69
68
('numerical_pipeline' , numerical_pipeline , X ['dataset_properties' ]['numerical_columns' ])
70
69
)
71
- if len (preprocessors ['categorical' ]) > 0 :
72
- categorical_pipeline = make_pipeline (* preprocessors ['categorical' ])
73
-
74
- column_transformers .append (
75
- ('categorical_pipeline' , categorical_pipeline , X ['dataset_properties' ]['categorical_columns' ])
76
- )
77
70
78
71
if len (preprocessors ['encode' ]) > 0 :
79
72
encode_pipeline = make_pipeline (* preprocessors ['encode' ])
@@ -82,6 +75,12 @@ def fit(self, X: Dict[str, Any], y: Any = None) -> "TabularColumnTransformer":
82
75
('encode_pipeline' , encode_pipeline , X ['encode_columns' ])
83
76
)
84
77
78
+ # if len(preprocessors['categorical']) > 0:
79
+ # categorical_pipeline = make_pipeline(*preprocessors['categorical'])
80
+ # column_transformers.append(
81
+ # ('categorical_pipeline', categorical_pipeline, X['dataset_properties']['categorical_columns'])
82
+ # )
83
+
85
84
# in case the preprocessing steps are disabled
86
85
# i.e, NoEncoder for categorical, we want to
87
86
# let the data in categorical columns pass through
0 commit comments