Skip to content

Commit 1b661c6

Browse files
authored
Merge branch 'main' into dependabot/pip/jupyter-server-2.7.2
2 parents dd17056 + f516f4d commit 1b661c6

20 files changed

+5380
-3750
lines changed

.gitignore

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
**/.ipynb_checkpoints/
2+
.DS_Store
3+
**/__pycache__/

README.md

Lines changed: 12 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -15,33 +15,31 @@ Lecture 1
1515
| title | studio lab |
1616
| :---: | ---: |
1717
| Introduction to ML | - |
18-
| Intro to NLP and Text Processing | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture1-Text-Process.ipynb)|
19-
| Bag of Words (BoW) | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture1-BOW.ipynb) |
20-
| K Nearest Neighbors (KNN) | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture1-KNN.ipynb) |
21-
| Final Project | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture1-Final-Project.ipynb)
18+
| Intro to NLP and Text Processing | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture1-Text-Process.ipynb)|
19+
| Bag of Words (BoW) | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture1-BOW.ipynb) |
20+
| K Nearest Neighbors (KNN) | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture1-KNN.ipynb) |
21+
| Final Project | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture1-Final-Project.ipynb)
2222

2323
Lecture 2
2424
| title | studio lab |
2525
| :---: | ---: |
26-
| Tree-based Models | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github//aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture2-Tree-Models.ipynb)|
27-
| Regression Models |Linear Regression [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture2-Linear-Regression.ipynb) <br> Logistic Regression [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture2-Logistic-Regression.ipynb) |
26+
| Tree-based Models | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github//aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture2-Tree-Models.ipynb)|
27+
| Regression Models |Linear Regression [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture2-Linear-Regression.ipynb) <br> Logistic Regression [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture2-Logistic-Regression.ipynb) |
2828
| Optimization-Regularization | - |
2929
| Hyperparameter Tuning | - |
30-
| AWS AI/ML Services |[![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture2-Sagemaker.ipynb) |
31-
| Final Project | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture2-Final-Project.ipynb)|
30+
| Final Project | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture2-Final-Project.ipynb)|
3231

3332
Lecture 3
3433
| title | studio lab |
3534
| :---: | ---: |
36-
| Neural Networks | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture3-Neural-Networks.ipynb) |
37-
| Word Embeddings | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture3-Word-Vectors.ipynb)|
38-
| Recurrent Neural Networks (RNN) | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github//aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture3-Recurrent-Neural-Networks.ipynb) |
39-
| Transformers |[![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture3-Neural-Networks.ipynb) |
40-
| Final Project | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture3-Final-Project.ipynb)|
35+
| Neural Networks | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture3-Neural-Networks-PyTorch.ipynb) |
36+
| Word Embeddings | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture3-Word-Vectors.ipynb)|
37+
| Recurrent Neural Networks (RNN) | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github//aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture3-Recurrent-Neural-Networks-PyTorch.ipynb) |
38+
| Final Project | [![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture3-Final-Project.ipynb)|
4139

4240

4341

44-
__Final Project:__ Practice working with a "real-world" NLP dataset for the final project. Final project dataset is in the [data/final_project folder](https://github.com/aws-samples/aws-machine-learning-university-accelerated-nlp/tree/master/data/final_project). For more details on the final project, check out [this notebook](https://github.com/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/master/notebooks/MLA-NLP-Lecture1-Final-Project.ipynb).
42+
__Final Project:__ Practice working with a "real-world" NLP dataset for the final project. Final project dataset is in the [data/final_project folder](https://github.com/aws-samples/aws-machine-learning-university-accelerated-nlp/tree/main/data/final_project). For more details on the final project, check out [this notebook](https://github.com/aws-samples/aws-machine-learning-university-accelerated-nlp/blob/main/notebooks/MLA-NLP-Lecture1-Final-Project.ipynb).
4543

4644
## Interactives/Visuals
4745
Interested in visual, interactive explanations of core machine learning concepts? Check out our [MLU-Explain articles](https://mlu-explain.github.io/) to learn at your own pace!

mlu-nlp.yml

Lines changed: 0 additions & 18 deletions
This file was deleted.

notebooks/MLA-NLP-Lecture1-BOW.ipynb

Lines changed: 52 additions & 47 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,9 @@
2424
{
2525
"cell_type": "code",
2626
"execution_count": 1,
27-
"metadata": {},
27+
"metadata": {
28+
"tags": []
29+
},
2830
"outputs": [
2931
{
3032
"data": {
@@ -53,7 +55,7 @@
5355
" "
5456
],
5557
"text/plain": [
56-
"<mluvisuals.BagOfWords at 0x7fdca12c4910>"
58+
"<mluvisuals.BagOfWords at 0x7f39e56dbf10>"
5759
]
5860
},
5961
"execution_count": 1,
@@ -79,23 +81,6 @@
7981
"4. <a href=\"#4\">Term Frequency-Inverse Document Frequencies</a>\n"
8082
]
8183
},
82-
{
83-
"cell_type": "code",
84-
"execution_count": 1,
85-
"metadata": {},
86-
"outputs": [
87-
{
88-
"name": "stdout",
89-
"output_type": "stream",
90-
"text": [
91-
"Note: you may need to restart the kernel to use updated packages.\n"
92-
]
93-
}
94-
],
95-
"source": [
96-
"%pip install -q -r ../requirements.txt"
97-
]
98-
},
9984
{
10085
"cell_type": "markdown",
10186
"metadata": {},
@@ -109,7 +94,9 @@
10994
{
11095
"cell_type": "code",
11196
"execution_count": 2,
112-
"metadata": {},
97+
"metadata": {
98+
"tags": []
99+
},
113100
"outputs": [],
114101
"source": [
115102
"from sklearn.feature_extraction.text import CountVectorizer\n",
@@ -135,7 +122,9 @@
135122
{
136123
"cell_type": "code",
137124
"execution_count": 3,
138-
"metadata": {},
125+
"metadata": {
126+
"tags": []
127+
},
139128
"outputs": [
140129
{
141130
"data": {
@@ -164,7 +153,9 @@
164153
{
165154
"cell_type": "code",
166155
"execution_count": 4,
167-
"metadata": {},
156+
"metadata": {
157+
"tags": []
158+
},
168159
"outputs": [
169160
{
170161
"data": {
@@ -199,26 +190,20 @@
199190
{
200191
"cell_type": "code",
201192
"execution_count": 5,
202-
"metadata": {},
193+
"metadata": {
194+
"tags": []
195+
},
203196
"outputs": [
204197
{
205198
"name": "stdout",
206199
"output_type": "stream",
207200
"text": [
208-
"['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']\n"
209-
]
210-
},
211-
{
212-
"name": "stderr",
213-
"output_type": "stream",
214-
"text": [
215-
"/home/ec2-user/anaconda3/envs/pytorch_p39/lib/python3.9/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n",
216-
" warnings.warn(msg, category=FutureWarning)\n"
201+
"['and' 'document' 'first' 'is' 'one' 'second' 'the' 'third' 'this']\n"
217202
]
218203
}
219204
],
220205
"source": [
221-
"print(binary_vectorizer.get_feature_names())"
206+
"print(binary_vectorizer.get_feature_names_out())"
222207
]
223208
},
224209
{
@@ -231,7 +216,9 @@
231216
{
232217
"cell_type": "code",
233218
"execution_count": 6,
234-
"metadata": {},
219+
"metadata": {
220+
"tags": []
221+
},
235222
"outputs": [],
236223
"source": [
237224
"new_sentence = [\"This is the new sentence\"]\n",
@@ -242,7 +229,9 @@
242229
{
243230
"cell_type": "code",
244231
"execution_count": 7,
245-
"metadata": {},
232+
"metadata": {
233+
"tags": []
234+
},
246235
"outputs": [
247236
{
248237
"data": {
@@ -273,7 +262,9 @@
273262
{
274263
"cell_type": "code",
275264
"execution_count": 8,
276-
"metadata": {},
265+
"metadata": {
266+
"tags": []
267+
},
277268
"outputs": [
278269
{
279270
"data": {
@@ -304,7 +295,9 @@
304295
{
305296
"cell_type": "code",
306297
"execution_count": 9,
307-
"metadata": {},
298+
"metadata": {
299+
"tags": []
300+
},
308301
"outputs": [
309302
{
310303
"data": {
@@ -340,7 +333,9 @@
340333
{
341334
"cell_type": "code",
342335
"execution_count": 10,
343-
"metadata": {},
336+
"metadata": {
337+
"tags": []
338+
},
344339
"outputs": [
345340
{
346341
"data": {
@@ -371,7 +366,9 @@
371366
{
372367
"cell_type": "code",
373368
"execution_count": 11,
374-
"metadata": {},
369+
"metadata": {
370+
"tags": []
371+
},
375372
"outputs": [
376373
{
377374
"data": {
@@ -404,7 +401,9 @@
404401
{
405402
"cell_type": "code",
406403
"execution_count": 12,
407-
"metadata": {},
404+
"metadata": {
405+
"tags": []
406+
},
408407
"outputs": [
409408
{
410409
"data": {
@@ -439,7 +438,9 @@
439438
{
440439
"cell_type": "code",
441440
"execution_count": 13,
442-
"metadata": {},
441+
"metadata": {
442+
"tags": []
443+
},
443444
"outputs": [
444445
{
445446
"data": {
@@ -471,7 +472,9 @@
471472
{
472473
"cell_type": "code",
473474
"execution_count": 14,
474-
"metadata": {},
475+
"metadata": {
476+
"tags": []
477+
},
475478
"outputs": [
476479
{
477480
"data": {
@@ -492,7 +495,9 @@
492495
{
493496
"cell_type": "code",
494497
"execution_count": 15,
495-
"metadata": {},
498+
"metadata": {
499+
"tags": []
500+
},
496501
"outputs": [
497502
{
498503
"data": {
@@ -525,9 +530,9 @@
525530
],
526531
"metadata": {
527532
"kernelspec": {
528-
"display_name": "Python [conda env:conda_pytorch_p39] *",
533+
"display_name": "sagemaker-distribution:Python",
529534
"language": "python",
530-
"name": "conda-env-conda_pytorch_p39-py"
535+
"name": "conda-env-sagemaker-distribution-py"
531536
},
532537
"language_info": {
533538
"codemirror_mode": {
@@ -539,9 +544,9 @@
539544
"name": "python",
540545
"nbconvert_exporter": "python",
541546
"pygments_lexer": "ipython3",
542-
"version": "3.9.16"
547+
"version": "3.10.14"
543548
}
544549
},
545550
"nbformat": 4,
546-
"nbformat_minor": 2
551+
"nbformat_minor": 4
547552
}

0 commit comments

Comments
 (0)