@@ -969,6 +969,8 @@ def read_sql_table(
969
969
table : str ,
970
970
database : str ,
971
971
ctas_approach : bool = True ,
972
+ unload_approach : bool = False ,
973
+ unload_parameters : Optional [Dict [str , Any ]] = None ,
972
974
categories : Optional [List [str ]] = None ,
973
975
chunksize : Optional [Union [int , bool ]] = None ,
974
976
s3_output : Optional [str ] = None ,
@@ -1090,6 +1092,11 @@ def read_sql_table(
1090
1092
ctas_approach: bool
1091
1093
Wraps the query using a CTAS, and read the resulted parquet data on S3.
1092
1094
If false, read the regular CSV on S3.
1095
+ unload_approach: bool
1096
+ Wraps the query using UNLOAD, and read the results from S3.
1097
+ Only PARQUET format is supported.
1098
+ unload_parameters : Optional[Dict[str, Any]]
1099
+ Params of the UNLOAD such as format, compression, field_delimiter, and partitioned_by.
1093
1100
categories: List[str], optional
1094
1101
List of columns names that should be returned as pandas.Categorical.
1095
1102
Recommended for memory restricted environments.
@@ -1177,6 +1184,8 @@ def read_sql_table(
1177
1184
database = database ,
1178
1185
data_source = data_source ,
1179
1186
ctas_approach = ctas_approach ,
1187
+ unload_approach = unload_approach ,
1188
+ unload_parameters = unload_parameters ,
1180
1189
categories = categories ,
1181
1190
chunksize = chunksize ,
1182
1191
s3_output = s3_output ,
0 commit comments