-
Notifications
You must be signed in to change notification settings - Fork 342
/
Copy pathanything_v3.py
178 lines (147 loc) · 5.08 KB
/
anything_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import sys
import time
import numpy as np
import cv2
import ailia
import random
import df
from df import OnnxRuntimeModel
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa
from model_utils import check_and_download_models, urlretrieve, progress_print # noqa
# logger
from logging import getLogger # noqa
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_UNET_PATH = 'unet.onnx'
WEIGHT_PB_UNET_PATH = 'weights.pb'
MODEL_UNET_PATH = 'unet.onnx.prototxt'
WEIGHT_SAFETY_CHECKER_PATH = 'safety_checker.onnx'
MODEL_SAFETY_CHECKER_PATH = 'safety_checker.onnx.prototxt'
WEIGHT_TEXT_ENCODER_PATH = 'text_encoder.onnx'
MODEL_TEXT_ENCODER_PATH = 'text_encoder.onnx.prototxt'
WEIGHT_VAE_ENCODER_PATH = 'vae_encoder.onnx'
MODEL_VAE_ENCODER_PATH = 'vae_encoder.onnx.prototxt'
WEIGHT_VAE_DECODER_PATH = 'vae_decoder.onnx'
MODEL_VAE_DECODER_PATH = 'vae_decoder.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/anything_v3/'
SAVE_IMAGE_PATH = 'output.png'
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Anything V3', None, SAVE_IMAGE_PATH
)
parser.add_argument(
"-i", "--input", metavar="TEXT", type=str,
default="witch",
help="the prompt to render"
)
parser.add_argument(
"--steps",
type=int,
default=50,
help="number of inference steps",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="random seed",
)
parser.add_argument(
'--onnx',
action='store_true',
help='execute onnxruntime version.'
)
parser.add_argument(
'--disable_ailia_tokenizer',
action='store_true',
help='disable ailia tokenizer.'
)
args = update_parser(parser, check_input_type=False)
# ======================
# Main functions
# ======================
def recognize_from_text(pipe):
prompt = args.input if isinstance(args.input, str) else args.input[0]
logger.info("prompt: %s" % prompt)
logger.info('Start inference...')
image = pipe(prompt=prompt, num_inference_steps=args.steps).images[0]
savepath = get_savepath(args.savepath, "", ext='.png')
image.save(savepath)
logger.info(f'saved at : {savepath}')
logger.info('Script finished successfully.')
def main():
seed = args.seed
if seed is not None:
np.random.seed(seed)
check_and_download_models(WEIGHT_UNET_PATH, MODEL_UNET_PATH, REMOTE_PATH)
check_and_download_models(WEIGHT_SAFETY_CHECKER_PATH, MODEL_SAFETY_CHECKER_PATH, REMOTE_PATH)
check_and_download_models(WEIGHT_TEXT_ENCODER_PATH, MODEL_TEXT_ENCODER_PATH, REMOTE_PATH)
check_and_download_models(WEIGHT_VAE_ENCODER_PATH, MODEL_VAE_ENCODER_PATH, REMOTE_PATH)
check_and_download_models(WEIGHT_VAE_DECODER_PATH, MODEL_VAE_DECODER_PATH, REMOTE_PATH)
if not os.path.exists(WEIGHT_PB_UNET_PATH):
logger.info('Downloading weights.pb...')
urlretrieve(REMOTE_PATH + WEIGHT_PB_UNET_PATH, WEIGHT_PB_UNET_PATH, progress_print)
logger.info('weights.pb is prepared!')
env_id = args.env_id
# initialize
unet = OnnxRuntimeModel.from_pretrained(
"./", "unet.onnx", args.onnx, env_id,
{'provider': 'CPUExecutionProvider', 'sess_options': None}
)
safety_checker = OnnxRuntimeModel.from_pretrained(
"./", "safety_checker.onnx", args.onnx, env_id,
{'provider': 'CPUExecutionProvider', 'sess_options': None}
)
vae_decoder = OnnxRuntimeModel.from_pretrained(
"./", "vae_decoder.onnx", args.onnx, env_id,
{'provider': 'CPUExecutionProvider', 'sess_options': None}
)
text_encoder = OnnxRuntimeModel.from_pretrained(
"./", "text_encoder.onnx", args.onnx, env_id,
{'provider': 'CPUExecutionProvider', 'sess_options': None}
)
vae_encoder = OnnxRuntimeModel.from_pretrained(
"./", "vae_encoder.onnx", args.onnx, env_id,
{'provider': 'CPUExecutionProvider', 'sess_options': None}
)
pndm_scheduler = df.schedulers.scheduling_pndm.PNDMScheduler.from_pretrained(
"./scheduler"
)
if args.disable_ailia_tokenizer:
import transformers
feature_extractor = transformers.CLIPImageProcessor.from_pretrained(
"./feature_extractor"
)
tokenizer = transformers.CLIPTokenizer.from_pretrained(
"./tokenizer"
)
else:
from ailia_tokenizer import CLIPTokenizer
feature_extractor = None
safety_checker = None
tokenizer = CLIPTokenizer.from_pretrained()
tokenizer.model_max_length = 77
# set pipeline
pipeline_cls = df.OnnxStableDiffusionPipeline
pipe = pipeline_cls(
vae_encoder = vae_encoder,
vae_decoder = vae_decoder,
text_encoder = text_encoder,
tokenizer = tokenizer,
unet = unet,
scheduler = pndm_scheduler,
safety_checker = safety_checker,
feature_extractor = feature_extractor,
requires_safety_checker = False
)
# generate
recognize_from_text(pipe)
if __name__ == '__main__':
main()