-
Notifications
You must be signed in to change notification settings - Fork 341
/
Copy pathpointnet_pytorch.py
271 lines (227 loc) · 9.66 KB
/
pointnet_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import sys
import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import json
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH_AIRPLANE = 'airplane_100.onnx'
MODEL_PATH_AIRPLANE = 'airplane_100.onnx.prototxt'
WEIGHT_PATH_BAG = 'bag_100.onnx'
MODEL_PATH_BAG = 'bag_100.onnx.prototxt'
WEIGHT_PATH_CAP = 'cap_100.onnx'
MODEL_PATH_CAP = 'cap_100.onnx.prototxt'
WEIGHT_PATH_CAR = 'car_100.onnx'
MODEL_PATH_CAR = 'car_100.onnx.prototxt'
WEIGHT_PATH_CHAIR = 'chair_100.onnx'
MODEL_PATH_CHAIR = 'chair_100.onnx.prototxt'
WEIGHT_PATH_EARPHONE = 'earphone_100.onnx'
MODEL_PATH_EARPHONE = 'earphone_100.onnx.prototxt'
WEIGHT_PATH_GUITAR = 'guitar_100.onnx'
MODEL_PATH_GUITAR = 'guitar_100.onnx.prototxt'
WEIGHT_PATH_KNIFE = 'knife_100.onnx'
MODEL_PATH_KNIFE = 'knife_100.onnx.prototxt'
WEIGHT_PATH_LAMP = 'lamp_100.onnx'
MODEL_PATH_LAMP = 'lamp_100.onnx.prototxt'
WEIGHT_PATH_LAPTOP = 'laptop_100.onnx'
MODEL_PATH_LAPTOP = 'laptop_100.onnx.prototxt'
WEIGHT_PATH_MOTORBIKE = 'motorbike_100.onnx'
MODEL_PATH_MOTORBIKE = 'motorbike_100.onnx.prototxt'
WEIGHT_PATH_MUG = 'mug_100.onnx'
MODEL_PATH_MUG = 'mug_100.onnx.prototxt'
WEIGHT_PATH_PISTOL = 'pistol_100.onnx'
MODEL_PATH_PISTOL = 'pistol_100.onnx.prototxt'
WEIGHT_PATH_ROCKET = 'rocket_100.onnx'
MODEL_PATH_ROCKET = 'rocket_100.onnx.prototxt'
WEIGHT_PATH_SKATEBOARD = 'skateboard_100.onnx'
MODEL_PATH_SKATEBOARD = 'skateboard_100.onnx.prototxt'
WEIGHT_PATH_TABLE = 'table_100.onnx'
MODEL_PATH_TABLE = 'table_100.onnx.prototxt'
WEIGHT_PATH_CLASSIFIER = 'cls_model_100.onnx'
MODEL_PATH_CLASSIFIER = 'cls_model_100.onnx.prototxt'
REMOTE_PATH = \
'https://storage.googleapis.com/ailia-models/pointnet_pytorch/'
POINT_PATH_AIRPLANE = 'shapenet_dataset/Airplane/a1708ad923f3b51abbf3143b1cb6076a.pts'
POINT_PATH_BAG = 'shapenet_dataset/Bag/4e4fcfffec161ecaed13f430b2941481.pts'
POINT_PATH_CAP = 'shapenet_dataset/Cap/c7122c44495a5ac6aceb0fa31f18f016.pts'
POINT_PATH_CAR = 'shapenet_dataset/Car/1f1b5c7c01557c484354740e038a7994.pts'
POINT_PATH_CHAIR = 'shapenet_dataset/Chair/355fa0f35b61fdd7aa74a6b5ee13e775.pts'
POINT_PATH_EARPHONE = 'shapenet_dataset/Earphone/e33d6e8e39a75268957b6a4f3924d982.pts'
POINT_PATH_GUITAR = 'shapenet_dataset/Guitar/d546e034a6c659a425cd348738a8052a.pts'
POINT_PATH_KNIFE = 'shapenet_dataset/Knife/9d424831d05d363d870906b5178d97bd.pts'
POINT_PATH_LAMP = 'shapenet_dataset/Lamp/b8c87ad9d4930983a8d82fc8a3e54728.pts'
POINT_PATH_LAPTOP = 'shapenet_dataset/Laptop/4d3dde22f529195bc887d5d9a11f3155.pts'
POINT_PATH_MOTORBIKE = 'shapenet_dataset/Motorbike/9d3b07f4475d501e8249f134aca4c817.pts'
POINT_PATH_MUG = 'shapenet_dataset/Mug/10f6e09036350e92b3f21f1137c3c347.pts'
POINT_PATH_PISTOL = 'shapenet_dataset/Pistol/b1bbe535a833635d91f9af3df5b0c8fc.pts'
POINT_PATH_ROCKET = 'shapenet_dataset/Rocket/15474cf9caa757a528eba1f0b7744e9.pts'
POINT_PATH_SKATEBOARD = 'shapenet_dataset/Skateboard/f5d7698b5a57d61226e0640b67de606.pts'
POINT_PATH_TABLE = 'shapenet_dataset/Table/408c3db9b4ee6be2e9f3e9c758fef992.pts'
SAVE_IMAGE_PATH = 'output.png'
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('PointNet.pytorch model', None, SAVE_IMAGE_PATH)
parser.add_argument(
'-c', '--choice_class', type=str, default='chair',
choices=(
'airplane', 'bag', 'cap', 'car', 'chair', 'earphone', 'guitar',
'knife', 'lamp', 'laptop', 'motorbike', 'mug', 'pistol',
'rocket', 'skateboard', 'table'
),
help='choice class'
)
parser.add_argument(
'--skip_plot',
action='store_true',
help='Skip showing 3D plot of result (for CUI)'
)
parser.add_argument(
'-w', '--write_json',
action='store_true',
help='Flag to output results to json file'
)
parser.add_argument(
'--seed',
type=int,
help='Speciry seed value to randomize order of input points'
)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def load_data(point_file, npoints=2500):
point_set = np.loadtxt(point_file).astype(np.float32)
if args.seed is not None:
np.random.seed(args.seed)
choice = np.random.choice(len(point_set), npoints, replace=True)
point_set = point_set[choice, :]
point_set = point_set - np.expand_dims(np.mean(point_set, axis=0), 0) # center
dist = np.max(np.sqrt(np.sum(point_set ** 2, axis=1)), 0)
point_set = point_set / dist # scale
return point_set
def predict_seg(points, net):
points = points.transpose(1, 0)
points = np.expand_dims(points, axis=0)
# feedforward
net.set_input_shape(points.shape)
output = net.predict({'point': points})
pred, _ = output
pred_choice = np.argmax(pred[0], axis=1)
return pred_choice
def predict_cls(points, net):
points = points.transpose(1, 0)
points = np.expand_dims(points, axis=0)
# feedforward
net.set_input_shape(points.shape)
output = net.predict({'points': points})
pred, _ = output
pred_choice = np.argmax(pred[0], axis=0)
pred_choice = [
'airplane', 'bag', 'cap', 'car', 'chair', 'earphone', 'guitar', 'knife',
'lamp', 'laptop', 'motorbike', 'mug', 'pistol', 'rocket', 'skateboard', 'table',
][pred_choice]
return pred_choice
def recognize_from_points(filename, net_seg, net_cls):
# prepare input data
point = load_data(filename)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
pred_seg = predict_seg(point, net_seg)
pred_cls = predict_cls(point, net_cls)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
pred_seg = predict_seg(point, net_seg)
pred_cls = predict_cls(point, net_cls)
if hasattr(matplotlib, "colormaps"):
cmap = matplotlib.colormaps["hsv"].resampled(10)
else:
cmap = plt.cm.get_cmap("hsv", 10)
cmap = np.array([cmap(i) for i in range(10)])[:, :3]
pred_color = cmap[pred_seg, :]
showsz = 800
point = point - point.mean(axis=0)
radius = ((point ** 2).sum(axis=-1) ** 0.5).max()
point /= (radius * 2.2) / showsz
# plot result
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X = point[:, 0]
Y = point[:, 1]
Z = point[:, 2]
ax.scatter(X, Y, Z, c=pred_color)
# adjust plot scale
max_range = np.array([X.max() - X.min(), Y.max() - Y.min(), Z.max() - Z.min()]).max() * 0.5
mid_x = (X.max() + X.min()) * 0.5
mid_y = (Y.max() + Y.min()) * 0.5
mid_z = (Z.max() + Z.min()) * 0.5
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
logger.info('class --'+str(pred_cls))
savepath = get_savepath(args.savepath, filename)
logger.info(f'saved at : {savepath}')
plt.savefig(savepath, dpi=120)
if not args.skip_plot:
plt.show()
if args.write_json:
results = {'class': str(pred_cls), 'points': []}
for i in range(point.shape[0]):
results['points'].append({'pos': point[i].tolist(), 'seg': int(pred_seg[i])})
json_file = '%s.json' % savepath.rsplit('.', 1)[0]
with open(json_file, 'w') as f:
json.dump(results, f, indent=2)
logger.info('Script finished successfully.')
def main():
rec_model = {
'airplane': (WEIGHT_PATH_AIRPLANE, MODEL_PATH_AIRPLANE, POINT_PATH_AIRPLANE),
'bag': (WEIGHT_PATH_BAG, MODEL_PATH_BAG, POINT_PATH_BAG),
'cap': (WEIGHT_PATH_CAP, MODEL_PATH_CAP, POINT_PATH_CAP),
'car': (WEIGHT_PATH_CAR, MODEL_PATH_CAR, POINT_PATH_CAR),
'chair': (WEIGHT_PATH_CHAIR, MODEL_PATH_CHAIR, POINT_PATH_CHAIR),
'earphone': (WEIGHT_PATH_EARPHONE, MODEL_PATH_EARPHONE, POINT_PATH_EARPHONE),
'guitar': (WEIGHT_PATH_GUITAR, MODEL_PATH_GUITAR, POINT_PATH_GUITAR),
'knife': (WEIGHT_PATH_KNIFE, MODEL_PATH_KNIFE, POINT_PATH_KNIFE),
'lamp': (WEIGHT_PATH_LAMP, MODEL_PATH_LAMP, POINT_PATH_LAMP),
'laptop': (WEIGHT_PATH_LAPTOP, MODEL_PATH_LAPTOP, POINT_PATH_LAPTOP),
'motorbike': (WEIGHT_PATH_MOTORBIKE, MODEL_PATH_MOTORBIKE, POINT_PATH_MOTORBIKE),
'mug': (WEIGHT_PATH_MUG, MODEL_PATH_MUG, POINT_PATH_MUG),
'pistol': (WEIGHT_PATH_PISTOL, MODEL_PATH_PISTOL, POINT_PATH_PISTOL),
'rocket': (WEIGHT_PATH_ROCKET, MODEL_PATH_ROCKET, POINT_PATH_ROCKET),
'skateboard': (WEIGHT_PATH_SKATEBOARD, MODEL_PATH_SKATEBOARD, POINT_PATH_SKATEBOARD),
'table': (WEIGHT_PATH_TABLE, MODEL_PATH_TABLE, POINT_PATH_TABLE),
}
WEIGHT_PATH, MODEL_PATH, POINT_PATH = rec_model[args.choice_class]
# model files check and download
logger.info("=== Segmentation model ===")
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
logger.info("=== Classifier model ===")
check_and_download_models(WEIGHT_PATH_CLASSIFIER, MODEL_PATH_CLASSIFIER, REMOTE_PATH)
# load model
env_id = args.env_id
logger.info(f'env_id: {env_id}')
# initialize
net_seg = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
net_cls = ailia.Net(MODEL_PATH_CLASSIFIER, WEIGHT_PATH_CLASSIFIER, env_id=env_id)
if args.input:
for point_path in args.input:
recognize_from_points(point_path, net_seg, net_cls)
else:
recognize_from_points(POINT_PATH, net_seg, net_cls)
if __name__ == '__main__':
main()