-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtda.conseq
168 lines (139 loc) · 6.66 KB
/
tda.conseq
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
rule format_gene_dep_csv:
inputs:
data={'type': 'dep-matrix', 'label' ~ 'Chronos_Combined|Chronos_Achilles|RNAi_merged|CERES_Combined|Avana'},
hdf5_utils=fileref("scripts/hdf5_utils.py", copy_to="hdf5_utils.py")
outputs:
{'type': 'dep-matrix-csv',
'dataset_id': '{{inputs.data.orig_dataset_id}}',
'label': '{{ inputs.data.label }}',
'confounders_label': '{{ inputs.data.confounders_label }}',
'filename': {"$filename": 'deps.csv'} }
run "python3" with """
from hdf5_utils import read_hdf5
df = read_hdf5("{{ inputs.data.filename }}")
df = df.transpose()
df.to_csv("deps.csv",index_label="Row.name")
"""
rule get_crispr_inferred_common_essentials:
inputs:
crispr_inferred_common_essentials={'type': 'crispr-inferred-common-essentials'}
outputs:{
'type': 'crispr-inferred-common-essentials-file',
'filename': {'$filename': 'crispr_inferred_common_essentials.csv'},
'orig_dataset_id': '{{ inputs.crispr_inferred_common_essentials.dataset_id }}'}
run "python3" with """
from taigapy import create_taiga_client_v3
tc = create_taiga_client_v3()
df = tc.get("{{ inputs.crispr_inferred_common_essentials.dataset_id }}")
df.to_csv("crispr_inferred_common_essentials.csv", index=False)
"""
rule common_essentials:
executor: dsub {"docker_image": "us.gcr.io/broad-achilles/depmap-pipeline-tda:v10", "min_ram": "10"}
inputs:
data={'type': 'dep-matrix-csv'},
crispr_inferred_common_essentials={'type': 'crispr-inferred-common-essentials-file'},
script=fileref('scripts/tda/CE_percentile_rank_analysis.py')
outputs:
{'type': 'common-essentials', 'label': '{{ inputs.data.label }}', 'filename': {'$filename': 'ce.csv'} }
run "python3 {{ inputs.script.filename }} {{ inputs.data.label }} {{ inputs.crispr_inferred_common_essentials.filename }} {{ inputs.data.filename }} ce.csv"
rule dep_moments:
executor: dsub {"docker_image": "us.gcr.io/broad-achilles/depmap-pipeline-tda:v10", "min_ram": "10"}
inputs:
data={'type': 'dep-matrix-csv'},
script=fileref('scripts/tda/moments.py')
outputs:
{'type': 'dep-moments', 'label': '{{ inputs.data.label }}', 'filename': {'$filename': 'moments.csv'} }
run "python3 {{ inputs.script.filename }} {{ inputs.data.filename }} moments.csv"
####### LRT
let genes_per_lrt_task = '1000'
rule lrt_partition:
inputs:
data={'type': 'dep-matrix-csv'},
partition_lrt_input=fileref('scripts/tda/lrt/partition-lrt-input.py')
outputs:
{'type': 'lrt-partitions',
'dataset_id': '{{inputs.data.dataset_id}}',
'label': '{{ inputs.data.label }}',
'filename': {'$filename': 'partitions.csv'} }
run "python3 {{ inputs.partition_lrt_input.filename }} {{ inputs.data.filename }} partitions.csv {{ config.genes_per_lrt_task }}"
rule lrt:
inputs:
partitions={'type': 'lrt-partitions', 'dataset_id': dataset_id, 'label': label},
data={'type': 'dep-matrix-csv', 'dataset_id': dataset_id, 'label': label},
sparkles_config=fileref('sparkles-config'),
lrt_sh=fileref('scripts/tda/lrt/lrt.sh')
outputs:
{'type': 'lrt-scores',
'label': '{{ inputs.data.label }}',
'dataset_id': '{{ inputs.data.dataset_id }}',
'filename': { '$filename': 'out.csv' }}
watch-regex: "task.*|Submitting job: .*" # print out the task status summary from sparkles
run """bash {{ inputs.lrt_sh.filename }} \
{{ config.SCRIPT_DIR }} \
{{ config.sparkles_path }} \
{{ inputs.sparkles_config.filename }} \
{{ inputs.partitions.filename }} \
{{ inputs.data.filename }} \
out.csv
"""
####### Merge the results from above into a single dataset
rule summarize_gene_deps:
inputs:
common_essentials=all {'type':'common-essentials'},
dep_moments=all {'type':'dep-moments'},
lrt=all {'type':'lrt-scores'},
probs=all {'type': 'raw-dep-prob-matrix'},
count_dep_lines=fileref("scripts/count_dep_lines.py"),
summarize_gene_deps=fileref("scripts/summarize_gene_deps.py")
outputs: {'type': 'gene-dep-summary', 'filename': {"$filename": "deps.csv"}}
run "python" with """
import json
with open("probs.json", "wt") as fd:
fd.write(json.dumps( {{ inputs.probs }} ))
"""
run "python3 {{ inputs.count_dep_lines.filename }} probs.json depcounts.csv"
run "python3" with """
import pandas as pd
import numpy as np
def read_artifacts(artifacts):
dfs = []
for a in artifacts:
df = pd.read_csv(a['filename'])
df['label'] = a['label']
dfs.append(df)
return pd.concat(dfs, ignore_index=True)
common_essentials = read_artifacts( {{ inputs.common_essentials }} )
common_essentials.to_csv("common_essentials.csv", index=False)
# common_essentials.to_csv("common_essentials.csv", index=False)
############################################################
# NAquib: Since I am only getting the common essentials True values from taiga, I have missing genes
# that should have False values.
# This is a temporary quick fix that should be refactored for cleaner code once
# some questions about other datasets(probably deprecated) such as chronos_score, sanger_crispr
# are clarified
depcounts_df = pd.read_csv("depcounts.csv")
chronos_genes = depcounts_df[depcounts_df['label'] == 'Chronos_Combined']
existing_genes = set(common_essentials.loc[common_essentials['label'] == 'Chronos_Combined', 'Row.name'])
new_genes = chronos_genes[~chronos_genes['gene'].isin(existing_genes)]
new_rows = pd.DataFrame({
'Row.name': new_genes['gene'],
'CE_percentile': np.nan,
'Common_Essential': False,
'label': 'Chronos_Combined'
})
common_essentials_updated = pd.concat([common_essentials, new_rows], ignore_index=True)
common_essentials_updated.to_csv("common_essentials.csv", index=False)
############################################################
dep_moments = read_artifacts( {{ inputs.dep_moments }} )
dep_moments.to_csv("moments.csv", index=False)
lrt = read_artifacts( {{ inputs.lrt }} )
lrt.to_csv("lrt.csv", index=False)
"""
run """
python3 {{ inputs.summarize_gene_deps.filename }} \
output=deps.csv \
common_essentials=common_essentials.csv \
moments=moments.csv \
lrt=lrt.csv \
depcounts=depcounts.csv
"""