|
35 | 35 | "name": "stderr",
|
36 | 36 | "output_type": "stream",
|
37 | 37 | "text": [
|
38 |
| - "/home/supercalculateur/source/andre/cdqa-dev/env-cdqa/lib/python3.6/site-packages/sklearn/externals/joblib/__init__.py:15: DeprecationWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.\n", |
39 |
| - " warnings.warn(msg, category=DeprecationWarning)\n", |
40 | 38 | "/home/supercalculateur/source/andre/cdqa-dev/env-cdqa/lib/python3.6/site-packages/tqdm/autonotebook/__init__.py:18: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
|
41 |
| - " \" (e.g. in jupyter console)\", TqdmExperimentalWarning)\n" |
| 39 | + " \" (e.g. in jupyter console)\", TqdmExperimentalWarning)\n", |
| 40 | + "I1120 11:43:47.615704 140657575868224 file_utils.py:39] PyTorch version 1.2.0 available.\n" |
42 | 41 | ]
|
43 | 42 | }
|
44 | 43 | ],
|
|
99 | 98 | "ExecuteTime": {
|
100 | 99 | "end_time": "2019-07-20T13:58:36.512980Z",
|
101 | 100 | "start_time": "2019-07-20T13:46:44.792080Z"
|
102 |
| - } |
| 101 | + }, |
| 102 | + "collapsed": true |
103 | 103 | },
|
104 |
| - "outputs": [], |
| 104 | + "outputs": [ |
| 105 | + { |
| 106 | + "name": "stderr", |
| 107 | + "output_type": "stream", |
| 108 | + "text": [ |
| 109 | + "I1120 11:43:48.194295 140657575868224 tokenization_utils.py:375] loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at /home/supercalculateur/.cache/torch/transformers/26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084\n" |
| 110 | + ] |
| 111 | + } |
| 112 | + ], |
105 | 113 | "source": [
|
106 |
| - "train_processor = BertProcessor(do_lower_case=True, is_training=True, n_jobs=-1)\n", |
| 114 | + "train_processor = BertProcessor(do_lower_case=True, is_training=True)\n", |
107 | 115 | "train_examples, train_features = train_processor.fit_transform(X='./data/SQuAD_1.1/train-v1.1.json')"
|
108 | 116 | ]
|
109 | 117 | },
|
|
116 | 124 | },
|
117 | 125 | {
|
118 | 126 | "cell_type": "code",
|
119 |
| - "execution_count": null, |
| 127 | + "execution_count": 4, |
120 | 128 | "metadata": {},
|
121 |
| - "outputs": [], |
| 129 | + "outputs": [ |
| 130 | + { |
| 131 | + "name": "stderr", |
| 132 | + "output_type": "stream", |
| 133 | + "text": [ |
| 134 | + "I1120 11:43:53.164162 140657575868224 configuration_utils.py:152] loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json from cache at /home/supercalculateur/.cache/torch/transformers/distributed_-1/4dad0251492946e18ac39290fcfe91b89d370fee250efe9521476438fe8ca185.bf3b9ea126d8c0001ee8a1e8b92229871d06d36d8808208cc2449280da87785c\n", |
| 135 | + "I1120 11:43:53.165523 140657575868224 configuration_utils.py:169] Model config {\n", |
| 136 | + " \"attention_probs_dropout_prob\": 0.1,\n", |
| 137 | + " \"finetuning_task\": null,\n", |
| 138 | + " \"hidden_act\": \"gelu\",\n", |
| 139 | + " \"hidden_dropout_prob\": 0.1,\n", |
| 140 | + " \"hidden_size\": 768,\n", |
| 141 | + " \"initializer_range\": 0.02,\n", |
| 142 | + " \"intermediate_size\": 3072,\n", |
| 143 | + " \"is_decoder\": false,\n", |
| 144 | + " \"layer_norm_eps\": 1e-12,\n", |
| 145 | + " \"max_position_embeddings\": 512,\n", |
| 146 | + " \"num_attention_heads\": 12,\n", |
| 147 | + " \"num_hidden_layers\": 12,\n", |
| 148 | + " \"num_labels\": 2,\n", |
| 149 | + " \"output_attentions\": false,\n", |
| 150 | + " \"output_hidden_states\": false,\n", |
| 151 | + " \"output_past\": true,\n", |
| 152 | + " \"pruned_heads\": {},\n", |
| 153 | + " \"torchscript\": false,\n", |
| 154 | + " \"type_vocab_size\": 2,\n", |
| 155 | + " \"use_bfloat16\": false,\n", |
| 156 | + " \"vocab_size\": 30522\n", |
| 157 | + "}\n", |
| 158 | + "\n", |
| 159 | + "I1120 11:43:53.591548 140657575868224 modeling_utils.py:383] loading weights file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin from cache at /home/supercalculateur/.cache/torch/transformers/distributed_-1/aa1ef1aede4482d0dbcd4d52baad8ae300e60902e88fcb0bebdec09afd232066.36ca03ab34a1a5d5fa7bc3d03d55c4fa650fed07220e2eeebc06ce58d0e9a157\n", |
| 160 | + "I1120 11:43:55.430284 140657575868224 modeling_utils.py:453] Weights of BertForQuestionAnswering not initialized from pretrained model: ['qa_outputs.weight', 'qa_outputs.bias']\n", |
| 161 | + "I1120 11:43:55.431005 140657575868224 modeling_utils.py:456] Weights from pretrained model not used in BertForQuestionAnswering: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias']\n" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "data": { |
| 166 | + "application/vnd.jupyter.widget-view+json": { |
| 167 | + "model_id": "9fb44d7dc6854474a6dc36ea50168573", |
| 168 | + "version_major": 2, |
| 169 | + "version_minor": 0 |
| 170 | + }, |
| 171 | + "text/plain": [ |
| 172 | + "HBox(children=(IntProgress(value=0, description='Epoch', max=2, style=ProgressStyle(description_width='initial…" |
| 173 | + ] |
| 174 | + }, |
| 175 | + "metadata": {}, |
| 176 | + "output_type": "display_data" |
| 177 | + }, |
| 178 | + { |
| 179 | + "data": { |
| 180 | + "application/vnd.jupyter.widget-view+json": { |
| 181 | + "model_id": "f50802fcf50043f1bfa008c9b911d3df", |
| 182 | + "version_major": 2, |
| 183 | + "version_minor": 0 |
| 184 | + }, |
| 185 | + "text/plain": [ |
| 186 | + "HBox(children=(IntProgress(value=0, description='Iteration', max=4, style=ProgressStyle(description_width='ini…" |
| 187 | + ] |
| 188 | + }, |
| 189 | + "metadata": {}, |
| 190 | + "output_type": "display_data" |
| 191 | + }, |
| 192 | + { |
| 193 | + "data": { |
| 194 | + "application/vnd.jupyter.widget-view+json": { |
| 195 | + "model_id": "c8eaa69941804829bc7c2c984487f7d2", |
| 196 | + "version_major": 2, |
| 197 | + "version_minor": 0 |
| 198 | + }, |
| 199 | + "text/plain": [ |
| 200 | + "HBox(children=(IntProgress(value=0, description='Iteration', max=4, style=ProgressStyle(description_width='ini…" |
| 201 | + ] |
| 202 | + }, |
| 203 | + "metadata": {}, |
| 204 | + "output_type": "display_data" |
| 205 | + }, |
| 206 | + { |
| 207 | + "name": "stdout", |
| 208 | + "output_type": "stream", |
| 209 | + "text": [ |
| 210 | + "\n" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "data": { |
| 215 | + "text/plain": [ |
| 216 | + "BertQA(adam_epsilon=1e-08, bert_model='bert-base-uncased', do_lower_case=True,\n", |
| 217 | + " fp16=False, gradient_accumulation_steps=1, learning_rate=3e-05,\n", |
| 218 | + " local_rank=-1, loss_scale=0, max_answer_length=30, n_best_size=20,\n", |
| 219 | + " no_cuda=False, null_score_diff_threshold=0.0, num_train_epochs=2,\n", |
| 220 | + " output_dir='models', predict_batch_size=8, seed=42, server_ip='',\n", |
| 221 | + " server_port='', train_batch_size=12, verbose_logging=False,\n", |
| 222 | + " version_2_with_negative=False, warmup_proportion=0.1, warmup_steps=0)" |
| 223 | + ] |
| 224 | + }, |
| 225 | + "execution_count": 4, |
| 226 | + "metadata": {}, |
| 227 | + "output_type": "execute_result" |
| 228 | + } |
| 229 | + ], |
122 | 230 | "source": [
|
123 | 231 | "reader = BertQA(train_batch_size=12,\n",
|
124 | 232 | " learning_rate=3e-5,\n",
|
|
0 commit comments