|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | +import matplotlib.pyplot as plt |
| 4 | + |
| 5 | +class LinearRegression: |
| 6 | + def fit(self, x, y, learning_rate): |
| 7 | + self.n_weights = np.zeros(x.shape[1]) |
| 8 | + self.learning_rate = learning_rate |
| 9 | + self.loss_=[] |
| 10 | + print("Initial cost {} ".format(model.cost_function(x, y, self.n_weights))) |
| 11 | + model.gradient(x, y, self.n_weights, 10000) |
| 12 | + print("Final cost {} ".format(model.cost_function(x, y, self.n_weights))) |
| 13 | + return self.n_weights |
| 14 | + |
| 15 | + |
| 16 | + def cost_function(self, x, y, n_weights): |
| 17 | + n = len(y) |
| 18 | + cost = np.sum((x.dot(self.n_weights.T) - y) ** 2) / (2 * n) |
| 19 | + return cost |
| 20 | + |
| 21 | + |
| 22 | + |
| 23 | + def gradient(self, x, y, n_weights, epochs): |
| 24 | + m = len(y) |
| 25 | + for i in range(epochs): |
| 26 | + h = x.dot(n_weights.T) |
| 27 | + loss = h - y |
| 28 | + change=(x.T.dot(loss) / m) * self.learning_rate |
| 29 | + self.n_weights -= change |
| 30 | + self.loss_.append(model.cost_function(x, y, self.n_weights)) |
| 31 | + if i % 10 == 0: |
| 32 | + print("Loss of {}th epoch is {} ".format(i , model.cost_function(x, y, self.n_weights))) |
| 33 | + return self.n_weights |
| 34 | + |
| 35 | + def predict(self, x): |
| 36 | + x=np.insert(x, 0 ,1) |
| 37 | + print(x.T.dot(self.n_weights)) |
| 38 | + |
| 39 | + |
| 40 | + |
| 41 | + def plot(self): |
| 42 | + plt.plot(self.loss_) |
| 43 | + plt.xlabel("Epochs") |
| 44 | + plt.ylabel("Loss") |
| 45 | + plt.show() |
| 46 | + |
| 47 | + |
| 48 | + |
| 49 | +if __name__ == "__main__": |
| 50 | + #Importing data and some preprocessing |
| 51 | + data = pd.read_csv('student.csv') |
| 52 | + data["one"] = [1 for i in data["Math"]] |
| 53 | + math = data["Math"] |
| 54 | + write = data["Writing"] |
| 55 | + read = data["Reading"] |
| 56 | + one = data["one"] |
| 57 | + x = np.array([one,math,read]).T |
| 58 | + y = np.array(write) |
| 59 | + learning_rate = 0.0001 |
| 60 | + model = LinearRegression() |
| 61 | + model.fit(x, y, learning_rate) |
| 62 | + print("Plotting loss") |
| 63 | + model.plot() |
| 64 | + model.predict(np.array([45,48])) |
0 commit comments