|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": false |
| 8 | + }, |
| 9 | + "outputs": [ |
| 10 | + { |
| 11 | + "name": "stderr", |
| 12 | + "output_type": "stream", |
| 13 | + "text": [ |
| 14 | + "Using TensorFlow backend.\n" |
| 15 | + ] |
| 16 | + } |
| 17 | + ], |
| 18 | + "source": [ |
| 19 | + "import numpy as np\n", |
| 20 | + "import pandas as pd\n", |
| 21 | + "import cv2\n", |
| 22 | + "import os\n", |
| 23 | + "from matplotlib import pyplot as plt\n", |
| 24 | + "%matplotlib inline\n", |
| 25 | + "\n", |
| 26 | + "import keras\n", |
| 27 | + "from keras.layers import Dense, Convolution2D, MaxPooling2D, Activation, Flatten\n", |
| 28 | + "from keras.layers import Reshape, UpSampling2D, ZeroPadding2D, Input\n", |
| 29 | + "from keras.models import Sequential, Model" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": 2, |
| 35 | + "metadata": { |
| 36 | + "collapsed": false |
| 37 | + }, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "data_path = '../../Dataset/JPEGImages/'" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 7, |
| 46 | + "metadata": { |
| 47 | + "collapsed": false |
| 48 | + }, |
| 49 | + "outputs": [ |
| 50 | + { |
| 51 | + "name": "stdout", |
| 52 | + "output_type": "stream", |
| 53 | + "text": [ |
| 54 | + "4000\n" |
| 55 | + ] |
| 56 | + } |
| 57 | + ], |
| 58 | + "source": [ |
| 59 | + "ims = os.listdir(data_path)\n", |
| 60 | + "\n", |
| 61 | + "select_ims = []\n", |
| 62 | + "for ix in range(4000):\n", |
| 63 | + " if '.jpg' in ims[ix]:\n", |
| 64 | + " img = cv2.imread(data_path + ims[ix])\n", |
| 65 | + " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n", |
| 66 | + " img = cv2.resize(img, (120, 120))\n", |
| 67 | + " select_ims.append(img)\n", |
| 68 | + "print len(select_ims)" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": 8, |
| 74 | + "metadata": { |
| 75 | + "collapsed": false |
| 76 | + }, |
| 77 | + "outputs": [ |
| 78 | + { |
| 79 | + "name": "stdout", |
| 80 | + "output_type": "stream", |
| 81 | + "text": [ |
| 82 | + "(4000, 320, 320, 3)\n" |
| 83 | + ] |
| 84 | + } |
| 85 | + ], |
| 86 | + "source": [ |
| 87 | + "data = np.asarray(select_ims)\n", |
| 88 | + "print data.shape" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": 9, |
| 94 | + "metadata": { |
| 95 | + "collapsed": true |
| 96 | + }, |
| 97 | + "outputs": [], |
| 98 | + "source": [ |
| 99 | + "np.save('image_data', data)" |
| 100 | + ] |
| 101 | + } |
| 102 | + ], |
| 103 | + "metadata": { |
| 104 | + "kernelspec": { |
| 105 | + "display_name": "Python 2", |
| 106 | + "language": "python", |
| 107 | + "name": "python2" |
| 108 | + }, |
| 109 | + "language_info": { |
| 110 | + "codemirror_mode": { |
| 111 | + "name": "ipython", |
| 112 | + "version": 2 |
| 113 | + }, |
| 114 | + "file_extension": ".py", |
| 115 | + "mimetype": "text/x-python", |
| 116 | + "name": "python", |
| 117 | + "nbconvert_exporter": "python", |
| 118 | + "pygments_lexer": "ipython2", |
| 119 | + "version": "2.7.12" |
| 120 | + } |
| 121 | + }, |
| 122 | + "nbformat": 4, |
| 123 | + "nbformat_minor": 2 |
| 124 | +} |
0 commit comments